UniDrive: Synergize Multiple Consumer
Cloud Storage Services

Haowen Tang!, Fangming Liu'; Guobin Shen?, Yuchen Jin*, Chuanxiong Guo?
'Huazhong University of Science and Technology
*Microsoft Research Asia _
Yestang02, fangminghk, dianjinyuchen}@gmail.com
2{jacky.shen, chguo}@microsoft.com

ABSTRACT

Consumer cloud storage (CCS) services have become popular among
users for storing and synchronizing files via apps installed on their
devices. A single CCS, however, has intrinsic limitations on net-
working performance, service reliability, and data security. To over-
come these limitations, we present UniDrive, a CCS app that syner-
gizes multiple CCSs (multi-cloud) by using only few simple public
RESTful Web APIs. UniDrive follows a server-less, client-centric
design, in which synchronization logic is purely implemented at
client devices and all communication is conveyed through file up-
load and download operations. Strong consistency of the meta-
data is guaranteed via a quorum-based distributed mutual-exclusive
lock mechanism. UniDrive improves reliability and security by
judiciously distributing erasure coded files across multiple CCSs.
To boost networking performance, UniDrive leverages all avail-
able clouds to maximize parallel transfer opportunities, but the key
insight behind is the concept of data block over-provisioning and
dynamic scheduling. This suite of techniques masks the diver-
sified and varying network conditions of the underlying clouds,
and exploits more the faster clouds via a simple yet effective in-
channel probing scheme. Extensive experimental results on the
global Amazon EC2 platform and a real-world trial by 272 users
confirmed significantly superior and consistent sync performance
of UniDrive over any single CCS.

Categories and Subject Descriptors

D.4.8 [Performance]: Measurements; C.2.4 [Distributed Systems]:
Distributed applications

General Terms

Measurement, Design, Performance

*The Corresponding Author is Fangming Liu, from Services Com-
puting Technology and System Lab, Cluster and Grid Computing
Lab in the School of Computer Science and Technology, Huazhong
University of Science and Technology.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

Middleware '15, December 07-11, 2015, Vancouver, BC, Canada

© 2015 ACM. ISBN 978-1-4503-3618-5/15/12 ...$15.00

DOI: http://dx.doi.org/10.1145/2814576.2814729.

Keywords

Consumer Cloud Storage, Erasure Codes, Synchronization, Net-
working Performance

1. INTRODUCTION

Consumer cloud storage (CCS) services like Dropbox and Google
Drive provide a convenient way for users to store and sync files
across their multiple devices. With CCS apps installed on user’s de-
vices, local file updates are monitored and automatically synchro-
nized with the cloud service which propagates the updates to all
user’s devices. This is considered to be a great advance compared
to conventional file hosting services like RapidShare and Megau-
pload (shut down in 2012) with storage only. As a result, we have
witnessed a rapid adoption of this new generation of cloud storage
services in recent years. For example, Dropbox has gained 300 mil-
lion users by May 2014 [47]. An increasing number of companies
(e.g., Microsoft, Google, Baidu), are also speeding up their CCS
offerings.

Despite the conveniences provided by the CCS, our online user
survey (with 594 participants) and active measurements (over 13
globally distributed PlanetLab nodes) reveal multiple user concerns
and performance issues for any single CCS.

Performance. Our measurement results show that the upload and
download performance of a CCS vary drastically in both spatial and
temporal dimensions due to fluctuating and dynamic network con-
ditions. For instance, as we measured in Dec. 2013, the average
time Dropbox takes to upload an 8§ MB file in Los Angeles can be
up to 2.76 times that in Princeton; and even at the same location
(e.g., Princeton), the difference between the max and min upload
duration within the same day can be as large as 17 times. Our
user survey results also reveal that users have common concerns
(reported by 69.62% of survey participants) about the sync perfor-
mance and the unpredictability of sync time for the CCSs they use.

Reliability. A service may experience temporal outages [48] or
spatial outages (i.e., it is available in some regions but not in oth-
ers). For example, Dropbox and Google Drive are blocked by the
Great Firewall in China. Users who live in or travel to such a region
will suffer from spatial outages.

Security and Vendor Lock-in. CCSs have full access to user data.
Thus, user data is at risk when the CCS is attacked, or when au-
thorities require the CCS provider to expose their data. When users
invest heavily in placing their data into a single CCS, they become
locked-in to that particular CCS. The more data they store, the more
difficult it is to switch to another CCS, even if more favorable CCSs
are available.

There are works [5,9] that help enterprises to move their storage
from single to multi-cloud to get better reliability, higher security,
and avoid vendor lock-in. This is achieved with a proxy system

that stripes data with redundancy to multiple enterprise cloud stor-
age (ECS) services (such as Amazon S3 and Windows Azure Stor-
age), while providing the same GET/PUT interfaces as the under-
lying clouds. Since multiple CCSs are readily available (Dropbox,
OneDrive, and Google Drive, etc.) and over 70% of CCS users
already own multiple CCS accounts according to our survey, we
wonder if such multi-cloud approach is also viable in the field of
consumer cloud storage. However, CCS is very different from ECS
for the provision of automatic multi-device synchronization rather
than simple GET/PUT interfaces, which requires far more compli-
cated coordination between client apps and cloud services. Further,
existing CCSs do not provide a public execution environment, nor
can they directly communicate with each other. Unlike their native
client apps that use private APIs for advanced control and efficient
data transfer, third-party applications can use only few simple pub-
lic RESTful Web APIs sufficient for simple file access to existing
user accounts. Therefore, the first question we ask is: can we re-
alize a CCS app in the multi-cloud while avoiding the reliability,
security, and vendor lock-in issues of a single CCS?

Existing multi-cloud solutions cannot well address the perfor-
mance issue, their networking performance is degraded by the slower
clouds, thus they can only achieve a medium level of performance
compared to the underlying clouds (i.e., unable to outperform the
fastest cloud) [9]. However, our measurement result shows that
the network bandwidth of different CCSs is diverse, highly fluctu-
ating, and difficult to predict in both spatial and temporal dimen-
sions, and the performance disparity among CCSs (up to 60 times
for average upload speed of different clouds) is much worse than
that among ECSs [25], thus traditional multi-cloud approaches are
deemed to suffer severe performance degradation for CCS. This
challenge leads to our second question: can we overcome the limi-
tation of multi-cloud and achieve superior networking performance?

We provide affirmative answers through the design and imple-
mentation of UniDrive, a CCS app that synergizes multiple CCSs
into a multi-cloud with better sync performance, reliability, and se-
curity. We follow a server-less, client-centric system design to ad-
dress the first challenge. UniDrive introduces no additional server,
and assumes only the minimum set of public data access Web APIs
from CCS providers. All message exchanges are performed via file
upload and download between client and the clouds. In UniDrive,
files are used in three different ways: metadata carrier, synchroniza-
tion signal, and normal data file. To realize efficient file synchro-
nization in a distributed way, we store all the metadata — the file
hierarchy image, the mapping between local files and their coun-
terparts in cloud, etc. — into a file. With the metadata, the ex-
act sync folder structure and pointers to actual data content in the
multi-cloud can always be restored. The metadata file is replicated
to all clouds and is sync’ed to all clients. Strong consistency of the
metadata file (hence all content data) is achieved through a quorum-
based distributed locking protocol, in which empty flag files are
used to implement a mutual exclusive lock.

To address the second challenge, we employ content-based seg-
mentation [33] to divide files into segments that are further divided
into blocks and apply erasure coding [27,36]. This not only enables
fine-grained control of block distribution into multiple CCSs for
better reliability and security, but also limits the impact of file edit-
ing and hence reduces network traffic in the synchronization. To
overcome the performance limitation in traditional multi-cloud ap-
proach and boost networking performance, UniDrive always uses
all available clouds and maximizes parallel transfer opportunities.

This is achieved via data block over-provisioning and dynamic schedul-

ing techniques that mask the diversified and varying network con-
ditions of the underlying clouds. More data blocks are scheduled

to faster clouds so that the network utilization of a cloud is in pro-
portion to its networking performance. With a simple yet effec-
tive in-channel probing scheme that determines the performance of
clouds in a timely manner, UniDrive is able to benefits more from
the faster clouds while avoiding being degraded by slower clouds.

We have implemented UniDrive as an app on the Windows plat-
form [3], and thoroughly evaluated its performance (upload and
download speed, sync time) and system overhead. We deployed
UniDrive on Amazon EC2 instances distributed in 7 different data
centers in 6 countries across 5 continents, and constructed a multi-
cloud using five popular CCSs (Dropbox, OneDrive, Google Drive,
BaiduPCS and DBank from Huawei). We compare UniDrive against
their native apps and two baseline multi-cloud designs. Experimen-
tal results show that UniDrive achieves superior and stable sync
performance, as well as enhanced reliability and security, across all
locations: the average speed improvement is about 2.64 x for up-
load, 1.49x for download, and 1.33 x for synchronization over the
best of the five CCSs. It incurs about 1% sync overhead, which is
similar to other CCSs. We also studied the performance of UniDrive
“in the wild”. The real-world usage data from 272 pilot users
worldwide confirmed that UniDrive delivered fast and consistent
access experiences all the time.

UniDrive uses the available quotas of a user’s multiple CCS ac-
counts, free or paid, at no extra cost as CCSs do not charge for
bandwidth (even though the storage quota may be charged). Fur-
ther, our design leads to more effective use of existing quotas. For
instance, assuming a user has 100 GB on three vendors, respec-
tively, under the requirement of tolerating unavailability of one
vendor, UniDrive provides 200 GB of storage space while a con-
ventional replication-based scheme would provide at most 150 GB.

This paper makes two key contributions. First, it demonstrates
that it is possible yet non-trivial to use simple RESTful Web APIs
to build a more reliable and secure CCS app in the multi-cloud.
Second, it is the first to address the performance issue in multi-
cloud and boost networking performance via the proposed data
block over-provisioning and dynamic scheduling techniques.

2. RELATED WORK

Many storage systems have been built using public cloud ser-
vices. For example, [15,30] exploited rented virtual machines (VMs),
while backup [44], file [45] and database [11] systems have been
built using public cloud storage services (e.g., Amazon S3 or Win-
dows Azure Storage). Some systems improve integrity and security
via auditing and encryption [31,39,42]. However, these systems are
within the domain of a single cloud and suffer from reliability and
vendor lock-in issues. UniDrive instead focuses on the use of mul-
tiple CCSs to overcome the issues associated with using a single
cloud provider.

We are not the first to propose combining multiple cloud ser-
vices. Recent work has proposed to improve data availability and
security by striping data across multiple service providers with re-
dundancy [10, 22, 23]. Other systems further optimize striping to
minimize monetary cost in terms of bandwidth and storage [35],
switching provider [5], or repairing lost data [21]. By using the
multi-cloud, DepSky [9] and ICStore [12] share a similar goal of

building a dependable client-centric storage system, and MetaSync [18]

realizes secure and reliable file synchronization. However, Dep-
sky requires global clock synchronization among clients and in-
curs an extra lock/release process in each write operation, while
MetaSync relies on a specific API called append-only list to im-
plement the synchronization barrier. Basescu et al. [7] address
this limitation by proposing a wait-free algorithm which supports
concurrent multi-writer. In contrast, UniDrive supports concurrent

.Dropbox .0neDrive DGoogIe Drive .BaiduPCS .DBank

Finish time (sec)
=

0 .
10 LA PU YTOBRA UK FR SUlI SG HK BEJSHHTYONZL

(a) Upload

loropbox [l onebrive [|Google Drive [[llBaidupcs [lpBank
10°

iy II'" |
il At

LA PU YTOBRA UK FR SUlI SG HK BEJSHHTYONZL

Finish time (sec)
=

(b) Download

Figure 1: Average upload/download time for an 8 MB file, to/from different CCSs on 13 PlanetLab nodes.

updates to the same file without explicit coordination using im-
mutable data blocks and conflict detection, and provides efficient
multi-device file synchronization with basic file access APIs from
CCSs. Further, UniDrive improves the networking performance
by its data block over-provisioning and dynamic scheduling tech-
niques, which we believe are UniDrive’s novel and unique contri-
butions.

Previous work on distributed file systems (DFSs) [38,43,50] pro-
vides many inspiring techniques to the UniDrive design. Examples
include content-based segmentation [33] to minimize update traf-
fic, and splitting metadata [40] to reduce sync overhead. While
many DFSs [6,24,34] share a similar server-less client-centric de-
sign, UniDrive differs from them in that the storage clouds it in-
corporates are ‘non-cooperative’ — they cannot communicate with
each other, nor do they provide an execution environment such as
a VM. UniDrive also does not assume direct communication be-
tween clients. In contrast, DFSs usually assume autonomous par-
ticipating nodes that can execute programs customized for the ser-
vice [16,49].

Besides building a Dropbox-like elastic file synchronization ser-
vice [29] involving both cloud servers and desktop clients, there are
also works based on the native client app of existing CCS to reduce
its network traffic via bundling frequent short data updates [26], or
to prevent data corruption and inconsistency with customized local
file system [S1]. Instead of developing proprietary cloud services
or enhancing existing native CCS client apps [28], UniDrive uti-
lizes public Web APIs to synergize multiple CCSs, and provides
higher reliability, security, and better networking performance in
the multi-cloud.

3. UNDERSTANDING CCS

As a motivation to this work, we conducted an online user survey

regarding the usage of consumer cloud storage services in Dec. 2013.

We also performed in-depth measurement study on the performance
of five representative CCSs. Unlike previous measurement work on
the performance [13,20], architecture design [46], application pro-
tocol [14], and security issues [32] using native CCS apps, we have
focused on the network characteristics of their Web APIs that are
essential for synergizing multiple cloud storage services, as a third-
party application.

3.1 User Perceptions: A Survey Study

A total number of 594 valid questionnaires are collected world-
wide (mainly China and U.S.), with 68.35% from students and pro-
fessors in colleges, and the rest from IT and information workers.
The questionnaires consist of multiple-choice questions'. We sum-

"http://www.sojump.com/jq/3036565.aspx

marize major findings below.

Basic Statistics: First of all, CCS indeed sees great penetration.
Around 80% of all participants (474 users) use CCSs, and over 70%
of them (347, with reference to all the 474 CCS users, same here-
after) own multiple CCS accounts, mainly propelled by the sharing
needs. Second, the main criterion that users choose or switch to a
particular CCS is that it is free (63.08% of users), followed by large
storage space (42.41%) and fast upload/download speed (33.97%).
Third, the top three functions of CCSs are file backup (used by
86.71% of users), file sharing (47.26%) and multi-device synchro-
nization (44.3%).

Major Concerns: The top three concerns are the slow upload/download

speed (69.62%), limitation on the file size and quota (41.56%), ser-
vice unavailability (31.43%), respectively. Somewhat surprisingly,
the top three reasons if a user would pay for a cloud storage ser-
vice are higher security (58.08%), better performance (54.13%),
and more storage space (33%). Significant portion (60.55%) of sur-
veyors expressed the concern of vendor lock-in threat when asked
what if ultra-large space (e.g., 1 TB) is provided for free.

3.2 Performance: A Measurement Study

Measurement Methodology: We selected top five representa-
tive CCSs worldwide, three from U.S. (Dropbox, OneDrive, and
Google Drive) and two from China (BaiduPCS and DBank from
Huawei). They are all among the most popular CCSs and provide
open RESTful Web APIs. We implemented a client software that
is able to upload/download files to/from all these five CCSs using
their own Web APIs. To gain a comprehensive view of their perfor-
mance over time and across locations, we periodically (every half
an hour) measured their performance for over one month from 13
geographically distributed PlanetLab nodes in 10 countries across
5 continents. In each experiment, we upload or download a file
with known size to or from the five CCSs back to back to ensure
fair network conditions. We repeat the experiments using different
file sizes (0/0.5/1/2/4/8 MB). Although there may exist background
traffic or bandwidth restrictions on PlanetLab, we believe the re-
sults still statistically reflect the performance variations from end
users’ viewpoint, since the performance varies dramatically from
every node to all CCSs. Our evaluation on Amazon EC2 in Sec-
tion 7.2 confirms our observation.

Networking Performance — Spatial Dimension: Figure 1 shows
the average (over one month), min and max time (plotted in log
scale) for uploading or downloading an 8 MB file to the five CCSs
from geographically distributed PlanetLab nodes. Similar obser-
vations can be made for other file sizes, and are omitted for sake
of space. From the figure, we observe that, firstly, the upload and
download performance of any CCS vary significantly across dif-
ferent locations. For instance, Dropbox takes 2.76 times longer

30 4

- Dropbox < OneDrive ©Google Drive|

o | © Dropbox v OneDrive 0 Google Drive

o

°
IS

v @Dropbox ¢-OneDrive-©Google Drive\

N
Download (I\7Ibps)
Finish time (sec)

Upload (Mbps)
3

o
5

S
Ratio (download)

Ratio (upload)

S

® File*sizetMBf 7 @

Figure 2: Impact of different file sizes on
the throughput, on Princeton node.

to upload an 8 MB file on Los Angeles node than on Princeton
node. Secondly, there is no always winner across different loca-
tions. Some CCSs outperform others at certain locations but un-
derperform at others. For example, the upload time (8 MB file) of
Dropbox is only half that of OneDrive on Princeton node, whereas
their roles reverse on Beijing node. Thirdly, the upload and down-
load performance are weakly correlated. The correlation between
the two subfigures is about 0.41. That is, clouds with fast upload
speed are likely to have fast download speed as well. Finally, higher
throughput is achieved as file size increases for both upload and
download, as shown in Figure 2. However, the increase tends to
diminish when the file size is larger than 4 MB.

Cloud data center locations are of great importance to consumer
cloud storage services, involving both policy and performance im-
plications. In our measurement, we observed a total of 554 unique
IP addresses from pinging service names of different clouds. We
found that Dropbox hosts its Web APIs on two Amazon data cen-
ters in USA, while BaiduPCS and DBank utilize geo-distributed
servers for their API services. In contrast, OneDrive and Google
Drive use globally distributed data centers and Edge POPs [17], re-
spectively, to serve API requests near end users. Besides different
API protocol designs, their different data center locations and serve
strategies result in the performance disparity of different CCSs at
different locations.

Networking Performance — Temporal Dimension: Figure 3
shows the upload time of the three U.S. CCSs (we omit the similar
results for the other two China CCSs for clarity) for an 8 MB file on
Princeton node in one month. We can easily observe that the fluctu-
ation is indeed high without predictable pattern (e.g., the difference
between the max and min upload time of Dropbox within the same
day can be up to 17 times). But one interesting finding is that the
performance variations of different CCSs are largely independent
with no obvious pattern along the time. These results indicate that
the temporal variation in performance is not resulted from the last
mile, but caused by network fluctuations across Internet paths and
clouds.

Service Availability: In addition to service outages [48], there
exist frequent transient accessibility issues: not every Web API
request is always successful. We collected the statistics of suc-
cess rate of all Web API requests in our experiments. We found
that when accessing U.S. CCSs from PlanetLab nodes in U.S. or
Canada, the success rate is around 99%, whereas the rate drops to
around 90% from nodes in China. Accessing BaiduPCS from all
but one nodes typically sees about 95% success rate, whereas that
of accessing DBank sees much larger fluctuation. There is no report
of severe service outages during the period of our experiments, thus
the access failures are likely caused by transient network or server
failures.

We studied the transient failure behavior of the three U.S. CCSs.
We found that: 1) their failures have negative correlation, as shown
in Table 1. This means that different CCSs rarely experience out-

0 131217 1312/22 1312127 14/01/01 14/01/06 14/01/11 14/01/16 0

Figure 3: Daily upload time for 8 MB file
over a month, on Princeton node.

0

0 1 2

3 File'sizetmBf 7 8

Figure 4: Impact of different file sizes on
the failure rate, on Princeton node.

Table 1: Correlation between failed Web API requests among
three U.S. CCSs. Italic numbers correspond to the download
ca

se
Upload/Download | Dropbox | OneDrive | Google Drive
Dropbox — -0.5064 -0.4601
OneDrive -0.1161 — -0.5326
Google Drive -0.9714 -0.123 —

ages at the same time; statistically, it is expected that while some
clouds are experiencing issues, others might be working normally.
2) Larger files are more likely to experience transmission failures,
as shown in Figure 4, which plots the percentage of different file
sizes among all the failed cases. We can see that when the file size
is less than 2 MB, there is no obvious increase in failure rate.

4. UniDrive: DESIGN OVERVIEW

The user survey and measurement results indicate that using a
single CCS has potential issues in performance, reliability, secu-
rity, and vendor lock-in. In this paper, we hope to overcome these
intrinsic problems of single CCS through the design of UniDrive
that synergizes multiple CCSs (multi-cloud for short) with a suite
of techniques to boost networking performance.

Challenges: To realize efficient file synchronization in multi-
cloud, there are two major challenges. Firstly, unlike previous sys-
tems that rely on running processes on server [4,30] or communi-
cation between servers [8, 19], existing CCSs do not provide any
execution environment, nor direct communication capabilities to
other CCSs. Worse even, different from a native CCS app that may
use private, possibly stateful, APIs to run complex control logic
and efficient file transfer, we can use only the few public REST-
ful (i.e., stateless) APIs (i.e., file upload, download; directory
create, list; and delete) that are solely for data access.
Such constraints make it a challenging task to effectively sync files
across devices and multiple CCSs and to ensure consistency among
them. Secondly, network conditions and accessibilities to different
CCSs are fluctuating across locations and along time, and are hard
to predict. The presence of slow clouds can severely degrade the
networking performance of the multi-cloud systems, making them
unable to outperform the underlying fastest cloud [9]. Thus, how
to accommodate such diversities and achieve superior performance
than any single cloud becomes another challenge.

Solution Idea: Given aforementioned challenges, our basic so-
lution idea is to go after a server-less, client-centric design that
distributes the coordination tasks to users’ devices, and rely on the
basic file upload/download operation to convey messages for lock-
ing and notification in multi-cloud multi-device synchronization.
No additional server beyond those servers that are part of the cloud
storage provider system are involved. To boost performance, we
may stripe user data into smaller blocks, perform erasure coding
to add redundancy, then carefully schedule the distribution of these
blocks to the multi-cloud to fulfill reliability and security require-

Local I Block ﬁ\ Local FS | —
SyncFolder | ! Storage | Interface

SyncFolder Data and
Image Mapping

Metadata En-/Decrypt
Syncrolder

. Image Data Transfer gy

|

|

Changed Engine =] |
FileList Storage Reclaim |

|

|

SyncFolder
User View (Ul)

@MetadataSync
(Distributed Lock)

Scheduler
Cloud Interface

Meta Data
Data Blocks

Control plane | | Data plane

Figure 5: Overall architecture of UniDrive.

ments, e.g. being able to recover user data during outages of a frac-
tion of clouds, and ensuring no single provider can have user data in
integrity. Networking performance can be improved through paral-
lel transferring to multi-cloud and exploring faster clouds.
Architectural Overview: Figure 5 depicts the overall architec-
ture of UniDrive. As typical CCS apps do, UniDrive employs a
local sync folder and exposes normal folder view to the user so that
the user will not be aware of the complexity of managing multiple
clouds.

Under such server-lesss, client-centric architecture, center to UniDrive

is the metadata design. Different from existing multi-cloud systems
(such as DepSky [9] and MetaSync [18]) that maintain an individ-
ual metadata file for each file/directory entry, we instead adopt a
single metadata file — SyncFolderImage that captures all the meta-
data: the image of file hierarchy, the mapping between local files
and their counterparts in multi-cloud, etc. With SyncFolderImage,
clients can recover the exact sync folder. This design eliminates
the maintenance of massive tiny metadata files and thus drastically
reduces the metadata overhead in the multi-cloud multi-device syn-
chronization.”> Metadata is DES encrypted and replicated to all
clouds and is sync’ed to all clients. Comparing local and sync’ed
versions of SyncFolderImage, the clients can autonomously take
proper actions to reach a sync’ed state. Function-wise, UniDrive
consists of the following three high-level modules:

Interfaces: UniDrive assumes the minimum set of RESTful data
access Web APIs to ensure the ability of integrating any potential
CCSs. The cloud interface abstracts these basic functionalities, so
as to hide the disparities in the APIs of different clouds and ensures
the extensibility of UniDrive. When a new cloud is to be added,
the developer only needs to implement this interface. The local
file system interface monitors file system changes arisen from local
editing and also commits file updates (write, delete, etc.) from the
cloud.

Control plane: Control plane modules are responsible for the
replication of SyncFolderImage to all the clouds and clients. Strong
consistency (via MetadataSync) of metadata in the multi-cloud is

achieved by implementing a quorum-based distributed mutual-exclusive

lock mechanism. We use an empty file to serve as the lock signal.
To reduce the overhead in MetadataSync, we design a Delta-sync
mechanism where a log-structured file is adopted to accumulate in-
cremental changes to the SyncFolderImage.

Data plane: Data plane modules handle all the tasks of data
transfer, including file segmentation and assembling, encryption

*Transferring a large number of tiny files consumes much more
network traffic and time than that of a single file with the same
amount of data, e.g., about 1.89 MB traffic to upload 1024 files
each of 100 bytes to Dropbox, while that for a single 100 KB file is
only 102 KB.

Segment Pool

Snapshot

Path name/File name
Device name
Timestamp

Size
Segment Count (n)

|

|

1 I

: -‘T— Segment IDx
|

1

1

1

I Segment ID1————1
1

|

1

1

1

|

1

[

Size, Coding Param, Ref_cnt
List of Blocks <ID, Cloud, Flg>
Segment IDy

I
I
|
|
|
J
Segment ID2 ———- —1‘
|
L

Size, Coding Param, Ref_cnt
List of Blocks <ID, Cloud, Flg>
Segment IDn ——— <+

| Segment IDz
l——L Size, Coding Param, Ref_cnt
List of Blocks <ID, Cloud, Flg>

SyncFolderimage

Figure 6: Illustration of SyncFolderImage content structure.
The hierarchy in the shaded box reflects the actual file hierar-
chy of the local sync folder in user’s view.

and decryption of metadata, scheduling and actual transfer of data
blocks. Reliability and security are enhanced through scheduling
different numbers of data blocks to physically separated multiple
clouds. Eventual consistency across devices and the multi-cloud is
guaranteed through file synchronization, i.e., user files in different
devices and data stored in the multi-cloud will eventually reach a
consistent state. Sync speed is improved by 1) maximizing par-
allel transfer opportunities, which is achieved via erasure coding
and the two-phase (availability-first and reliability-second) trans-
ferring strategy, and 2) exploiting more the faster clouds by over-
provisioning and dynamic scheduling (i.e., transferring more parity
blocks to faster clouds than its fair share) via an in-channel probing
scheme.

5. CONTROL PLANE DESIGN

In this section, we present the data model and the synchroniza-
tion protocol to achieve metadata synchronization with limited Web
APIs.

5.1 Data Model

In UniDrive, there are two types of data, namely content data and
metadata. The content data are the actual file content. It may be
divided into multiple segments, each segment is further chunked
into fixed-sized data blocks (or blocks for short). In UniDrive, a
block is the basic unit for file transfer and also the data storage in
the cloud. The block is immutable once created.

The metadata captures the status of the sync folder and all the
updates occurred to it. It consists of three parts: a SyncFolderlm-
age, a segment pool and a ChangedFileList. SyncFolderImage (or
image for short) maintains the file system hierarchy of the local
sync folder and all its files. For each file in the sync folder, an entry
exists in the image, containing the snapshots of the corresponding
file. Each snapshot summarizes all the metadata of a file, includ-
ing its full path, timestamp, file size, segment count and a list of
segment IDs referring to concrete segments in the segment pool, as
shown in Figure 6.

In UniDrive, a segment is identified by the hash of its content
and represented as a list of blocks <Block-ID, Cloud-ID>, where
Block-ID is its sequence number in the scope of the segment (the
actual filename of a block is thus the segment ID concatenated with
its sequence number), Cloud-ID denotes on which cloud the block
is stored. It mandates to upload data blocks before updating the
metadata, and is set asynchronously via callback. ChangedFileList
records all the changes performed in the local sync folder, such
as adding, editing, or deleting files or folders, etc., since the last
synchronization. These records enable UniDrive to aggregate and
commit series of changes to the image at once. ChangedFileList
will be cleared after each successful synchronization.

5.2 Metadata Synchronization

The separation of content data from metadata enables asynchronous

update of them. In UniDrive, data blocks are uploaded freely (e.g.,
upon created) and multiple devices can upload their data blocks
concurrently. The file consistency is ensured through the consis-
tency of metadata. Such a design allows maximum efficiency as
transferring of data blocks usually takes most of the sync time.

There exist two types of metadata updates, namely local update
and cloud update. A local update is generated locally, due to file ed-
its in local sync folder, and to be propagated to the cloud and then
to other devices. It is signaled by a non-empty ChangedFileList.
The cloud update is the pending update (from other devices) a de-
vice needs to sync up with. It occurs when a device committed its
local update to the multi-cloud, and is signaled by a newer version
of metadata in the clouds. It is periodically checked at a time inter-
val 7. To reduce the overhead of checking cloud update, we use a
small version file that contains only a device name and timestamp.
There is no need of global clock synchronization. As long as the
version file is different from the local one, a client can conclude a
pending cloud update.

Algorithm 1 Metadata synchronization.

Input:
Multi-cloud: C' = {c1,¢2,...,cn}
Original metadata: v,
ChangedFileList: ¢
Output:
Strong consistency of metadata across devices and multi-cloud
1: function SYNCMETADATA
2 if check_local_update(e) then
3 local metadata v; <— apply_local_update(vy, €)
4 acquire_lock(C)
5: if check_cloud_update(C) then
6: cloud metadata v. <— download_metadata(C')
7: updated metadata v, < merge(vo, vy, ve)
8 upload_metadata(vy, C')
9

: Vo 4— Uy
10: else
11: upload_metadata(v, C')
12: Vo < U]
13: end if
14: release_lock()
15: else if check_cloud_update(C') then
16: cloud metadata v. < download_metadata(C')
17: apply_cloud_update(vo, ve)
18: Vo 4— Ve
19: end if

20: end function

Algorithm 1 outlines the logic of metadata sync of UniDrive. To

commit a local update, a client must first acquire the lock (line 4),
make the metadata up-to-date by downloading and merging with
cloud update if it exists (line 6-7), and then commit the latest meta-
data (line 8, 11). Normally, it can sync up cloud updates lazily e.g.,
periodically, and merge to local metadata (line 17). Two cases need
special handling, namely concurrent local updates from multiple
devices and conflicting local and cloud updates. We elaborate our
design as below.
Handling Concurrent Local Updates: To ensure the consistency
of metadata, all attempts from different devices to commit local
updates to the multi-cloud have to be serialized. This is achieved
by using a mutual-exclusive lock mechanism. We have designed
a quorum-based distributed locking protocol on top of multiple
CCSs, which only involves a special lock file with empty content.

Concretely, the protocol works as follows: firstly, the attempting
device d generates a lock file with name lock_d_t (¢ denotes the

local timestamp on d when locking) to identify itself, and uploads
the lock file to a specific lock directory across all the clouds.® Sec-
ondly, d calls 1ist on each cloud to list all files stored in the lock
directory, and is considered to acquire the lock of a cloud if there
exists only its own lock file on that cloud. To handle the potential
contention (due to different network latency), quorum number of
locks needs to be acquired, i.e., succeed in locking down majority
of clouds. Only in this case, it can proceed to upload the metadata
(after ensuring metadata is up-to-date). Attempts failed to acquire
enough locks are treated as failures, then d needs to withdraw its
own request by deleting its lock files from all the clouds, and exe-
cutes a random backoff — waiting for a random time before trying
to acquire the metadata lock again. A device releases the lock after
finishing updates by deleting all its lock files from all the clouds.
The locking protocol does not requires a cloud to guarantee se-
quential concsistency for file operations, but only assumes the com-
monly provided read-after-write consistency, i.e., after uploading a
file to the cloud, the file can be listed and read. When a client
1ist and sees file A, then all subsequent 1ists from any clients
will also contain file A. Hence, once a client acquires the lock of
a cloud, all other clients will see its lock file and deem that cloud
is blocked. Furthermore, a lock-breaking mechanism, with no re-
quirement on global clock synchronization among clients, is de-
vised to tolerate potential faulty clients. After acquiring the lock,
the client is required to periodically refresh its lock files to prevent
them from being obsolete, i.e., seen by other clients over a time
threshold AT such as 120 seconds. Failed to do so will prevent the
client from continuing the metadata update process, its lock will be
revoked since other clients will check (by recording the first time it
sees each lock file) and delete those obsolete lock files after calling
the 1ist. This will ensure that other devices will be able to make
process when a device crashes while holding the lock, and that the
crashed device will no longer hold the lock when it recovered after
a long delay (i.e., AT).
Conflicting Local and Cloud Updates: When both the local up-
date and the cloud update exist, conflicts may happen. Inspired
by the resolution policies in SVN and GIT, we propose a practi-
cal conflict detection and resolution mechanism. Specifically, we
first record the original metadata v,, and handle ChangedFileList
to obtain the latest metadata v;. We then download the cloud meta-
data v. and try to merge v; and v.. We proceed to detect poten-
tial conflicts. To this end, we de-serialize v. and perform a tree-
comparison against v,, and obtain their difference AC'. We further
obtain the difference AL between v; and v, in a similar way. We
compare AC and AL. For entries without coincidental updates,
we directly merge v; and v. to obtain up-to-date metadata v,, by
applying AC' to v; or equivalently AL to v.. For entries do have
both local and cloud updates, we retain both updates in the merged
metadata v,,, and prompt the user of the conflict. The user can re-
solve the conflict later. Note that file content data corresponding to
conflict entries are also retained to facilitate future conflict resolu-
tion.
Delta-sync for Efficiency: The gross metadata file grows linearly
with the number of files, and can become large when there are many
files in the sync folder. To avoid repeated transferring of unchanged
part of the whole metadata, we adopt the metadata design princi-
ple of HDFS [40] and divide the metadata into a base file and a
delta file. The base file is the snapshot of the metadata at a specific
time, and the delta file records all the updates since then with a log

3Using the special lock directory instead of an existing one that
may contain many data files is to ensure small traffic when listing.
The lock directory contains at most the same number of files as that
of devices.

structure [37]: updates are always appended to the delta file. Nor-
mally, only delta is transferred to the cloud. The size of delta file
grows with time. When its size reaches a threshold A (e.g., 0.25
of the total base file size or 10 KB), it is merged with the base (by
client who acquires the lock) to restore the up-to-date metadata and
form a new base. The new base file will be transferred to cloud
and sync’ed to other devices later on. Meanwhile, the delta file is
cleared.

6. DATA PLANE DESIGN

Data plane handles data block generation, scheduling, and trans-
ferring. It seeks to improve sync performance by minimizing the
traffic, maximizing parallel transferring opportunities, and explor-
ing faster clouds.

6.1 Segment and Block Generation

Content-based File Segmentation: In UniDrive, to minimize
data traffic, we adopt the content-based segmentation method [33]
to divide a file into segment(s), which are indexed by the SHA-1
hash of all their content. This ensures that segments with same
content, even from different files, will have the same file name.
Thus, effective content deduplication, and hence the suppression
of redundant transmissions, are enabled. Deduplication is achieved
via reference counting [41]. Recall that we keep both versions of
conflicting files who partially share the same content, thus dedu-
plication is especially helpful in reducing the storage and network
traffic. Content-based segmentation will result in segments of vary-
ing sizes. Considering the impact of file size on transfer efficiency,
we constrain the size of final segments to a range, say (0.56, 1.56),
where 6 is a tunable parameter. This is achieved by merging small
neighboring segments or splitting large segments.

Data Block Generation: Packet-based coding schemes are typi-
cally used in file transfer over the Internet. It simplifies the schedul-
ing task especially when there are multiple paths/connections be-
tween the two transferring entities. In UniDrive, we follow these
practices and generate (parity) data blocks via erasure coding [27,
36]. Note that data deduplication is performed at the segment level,
and data blocks are immutable for consistency and efficient con-
current access. When a new segment is formed, new data blocks
are generated; and similarly, when a segment is deleted, all its data
blocks are deleted.

Security is reinforced by applying non-systematic [2] Reed-Solomon

codes to generate parity data blocks, which removes their seman-
tics and thus prevents the providers from inferring the original con-
tents. Assume a user enrolls /N clouds, and imposes the security
requirement of preventing unauthorized access to original files if
less than K clouds are breached by either malicious insiders or
outside attackers (i.e., no K — 1 providers can recover the data),
and the reliability requirement of tolerating up to N — K. clouds
being not accessible (i.e., at least K, clouds are accessible). Obvi-
ously, we need to have 1 < K, < K, < N. Assume a file seg-
ment is divided into £ data blocks. From reliability requirement,
we need to put at least [KLT] blocks (termed fair share afterwards)
to each cloud, whereas security requirement dictates that we can
put at most [ﬁ] — 1 blocks (or & blocks if K = 1). There-

fore, we should generate a minimum of [KLT]N and a maximum
of ([ﬁ] — 1)N data blocks. For simplicity, we adopt non-
systematic RS codes with pre-fixed parameters, i.e., ([2N, k),

s

and generate in advance [Kij N normal parity blocks. Additional
parity blocks are called over-provisioned parity blocks. They can
be generated either in advance (consuming more memory or temp
storage) or on demand (incurring additional coding latency).

Cloud 1 Cloud 2 Cloud 3 Cloud 4

I Parity block (PB)

Figure 7: Scheduling for normal parity blocks, and exploration
of faster clouds with over-provisioned parity blocks (N = 4,
k=4, K, =2,K; =2).

I I over provisioned PB

6.2 Data Block Scheduling

The scheduler determines how to distribute data blocks to the
multi-cloud while fulfilling the reliability and security requirements.
In UniDrive, files are uploaded to (or downloaded from) multiple
clouds in parallel. A file is said to become available when each
of its segment has k data blocks uploaded to the multi-cloud alto-
gether; and it is said to become reliable when each cloud received
at least its fair share. We design different strategies for files to be-
come available or reliable.

Basic Upload Scheduling: The [KLT] N normal parity data blocks
are scheduled in a deterministic way to achieve the reliability goal.
As multi-cloud has fluctuating network conditions as well as uncor-
related access failures, we simply schedule them evenly to all the
available clouds. This ensures other devices to have more sources
to download from in parallel. However, as clouds may have diver-
sified and varying networking performance, this even assignment
strategy is likely to end up with uneven completion time and render
idle those faster clouds, while waiting for slower clouds to com-
plete.

Over-Provisioning: To mask the performance disparity of the
underlying clouds and better leverage faster clouds, we temporar-
ily over-provision parity blocks, by continuing to send extra parity
blocks to faster clouds even if they have received their fair share.
Clearly, these over-provisioned parity blocks maximally leverage
the parallel uploading opportunities and make the network utiliza-
tion of a cloud in proportion to its performance. This not only
ensures quicker availability of files, but also helps to accelerate the
downloading as they are likely to be faster clouds in the download
time and they have more blocks to supply. Figure 7 depicts the
process where the normal and over-provisioned parity blocks are
in green and yellow colors, respectively. In the figure, the slower
Cloud 1 and 4 received only the fair share of 2 blocks while the
faster Cloud 2 and 3 received additional over-provisioned parity
blocks besides their fair share.

Over-provisioned parity blocks are not scheduled in advance.
Rather, they are assigned on the fly to those clouds finished trans-
ferring their fair share. The over-provisioning process will stop
when the slowest cloud finishes uploading its fair share or when
the maximally allowed blocks (due to security requirement) are
transferred. Since a faster cloud becomes “unavailable” for upload
when its storage quota is used up, over-provisioned parity blocks
will be cleaned to reclaim storage space when the corresponding
file is sync’ed to all devices.

Dynamic Scheduling for Batch Uploading: When performing
batch uploading, data blocks are scheduled following a two-phase
— availability-first, reliability-second — principle. That is, when

a file becomes available (to the multi-cloud), all networking re-
sources are immediately assigned to the next file. Only when all
files become available, we then start to transfer blocks to fulfill the
reliability requirement to those clouds that have not received their
fair shares. Note that over-provisioned parity blocks may be used,
as described above. Whenever a block is successfully uploaded
or downloaded, it notifies the scheduler via callbacks (to update
the Cloud-ID field in the metadata). The scheduler hence tracks
the progress of each file transfer. Evidently, this principle ensures
all files become available in the shortest time. It weighs more the
availability of all files over the reliability of a portion of files. The
rationale lies in the fact that people often want to get files uploaded
or sync’ed as soon as possible.

Dynamic Scheduling for Download: Only £ data blocks are
needed to recover an original file segment, no matter they are nor-
mal or over-provisioned parity blocks, from whichever clouds. Thus,
the download scheduling is simple: eligible clouds (i.e., those have
data to supply, as indicated by the Cloud-ID field) are kept sorted
according to their connection speed; and then request of the next
block is always assigned to the idle connection of the fastest clouds.
This not only considers the transient performance of each cloud,
but also benefits from over-provisioning as faster clouds are likely
to contribute more blocks for downloading besides their fair share.
When £ blocks are downloaded, all networking resources are as-
signed to the next file.

In-Channel Bandwidth Probing: Essentially, we intend to put
the next uploading or downloading request to the fastest available
cloud. Instead of betting on predicting which clouds are faster or
via explicit probing that would incur overheads and latency, we em-
ploy a simple yet effective in-channel bandwidth probing scheme
that uses the last transmission as probes. Concretely, we moni-
tor the throughput of all the currently transferred data blocks to
each cloud, compute the average per-connection throughput of all
clouds and sort them accordingly. We use average per-connection
throughput instead of average throughput due to multiple concur-
rent HTTP(s) connections to the same cloud and the scheduling is
done on a per-block basis.

Adding or Removing CCSs: A user may add or remove CCSs.
This can be effectively handled in UniDrive as the client has a full
copy of all the files. It only needs to rebalance the content distribu-
tion to fulfil the reliability and security requirement (no more than
allowed blocks will ever be stored). In particular, to remove a CCS,
we only need to redistribute its fair share (i.e., normal parity data
blocks identifiable from the metadata) to other available CCSs. To
add a CCS, its fair share is first calculated and then uploaded. Other
CCSs’ fair share are updated simply by deleting some data blocks.

7. EXPERIMENTS AND REAL-WORLD
TRIALS

Implementation: We have implemented UniDrive as an app on
Windows platform with over 40,000 lines of C# codes (over 7,000
lines for the core logic). Its most recent release is available at
https://code.google.com/p/unidrive-hust/. The
system is decoupled into three layers: the cloud interface layer, the
core layer and the local interface layer. At the back-end, the cloud
interface layer hides the complexity of managing the underlying di-
verse CCSs by abstracting each CCS as a storage cloud object with
five basic file access interfaces (i.e., upload, download, create, list
and delete). The core layer implements all the control plane and
data plane logic and carries out file synchronization. It realizes the
sync logic using priority queuing (a high priority and a low priority
queue for each cloud) and uses multi-threaded file transfer to each

cloud to make good use of the available bandwidth. The local inter-
face layer not only monitors changes in sync folders via local file
system interface, but also provides a unified GUI for multi-cloud
configuration and management.

Evaluation Overview: In UniDrive, data security requirement is
guaranteed by storing no more than allowed data blocks on each
cloud and is always met. Therefore, we focus our experimental
evaluation on the networking performance, overhead and reliabil-
ity. The same set of five commercial CCSs as in our measurement
study (Section 3.2) are employed. Their native apps are deployed
on 7 geographically distributed Amazon EC2 instances covering
6 countries (U.S., Brazil, Ireland, Singapore, Japan and Australia)
across 5 continents. Each instance is running Windows Server 2012
with a single “virtual CPU” and 1.7 GB memory, which is sufficient
for hosting these client applications. AWS is used instead of Plan-
etLab because most official native CCS apps do not support Linux
platform. Since standard benchmark tool like SPEC SES 2014 [1]
for measuring file server throughput and response time are not quite
suitable for CCS, we draw lessons from previous CCS measure-
ment works [13,14] and devise our own evaluation methodology to
comprehensively compare different performance metrics of these
CCS apps. Note that, without access to native APIs of those CCSs,
we infer their performance by capturing their network traffic (using
Wireshark) and analyzing the traces. We also measure UniDrive’s
real-world performance from traces of 272 pilot users worldwide.

7.1 Experimental Setup

Approaches in Comparison: In addition to official native apps of
commercial CCSs, we also compare UniDrive against an intuitive
multi-cloud solution where a file is chunked into blocks and uni-
formly distributed to the local sync folders of CCSs’ native apps
(i.e., using their own proprietary sync logic), and a multi-cloud
benchmark which resembles traditional multi-cloud solutions like
RACS and DepSky, i.e., without over-provisioning and dynamic
scheduling but still uniformly distributes parity data blocks to the
multi-cloud with reliability and security features. This is to ver-
ify the effectiveness of the performance enhancing techniques in
UniDrive.

System Metrics: The major performance metrics we are inter-
ested in are the upload/download time and also end-to-end sync
time. We focus on the available time, i.e., the time it takes for a
file to become available to the user. Another metric to examine is
the system overhead of UniDrive, which is defined as the ratio of
additional network traffic to the actual sync’ed data size.
Parameter Configurations: Given that we have 5 clouds, we set
K, = 3 and K, = 2 for moderate reliability and security require-
ment. We note that the performance of UniDrive will be better
if smaller K, and K are specified. We set segment size 0 to 4
MB and £ to 3 so that the final block size is around 1-2 MB, which
strikes a good balance between throughput and failure rate (see Sec-
tion 3.2). Different CCSs’ native apps allow different numbers of
concurrent connections, e.g., Dropbox allows 8 connections while
OneDrive allows only 2. We use up to 5 connections to each cloud
for fair comparisons.

7.2 Evaluation Results

Micro-benchmark: We begin by measuring the upload and down-
load time of files with different sizes. Considering the spatial and
temporal variations in network condition, we follow the similar
methodology as in Section 3.2. We focus on comparing networking
performance, and only account for successful upload/download op-
erations. While single CCS experiences availability issues during

lDropbox [lOneDrive [[JGoogle Drive [[|BaiduPCS

J[Dbank [ElBenchmark Il UniDrive
10 =

N

Finish time (sec)

0 Oregon VirginiaSao Paulo Ireland Singapore Tokyo Sydney

(a) Upload

lDropbox llOneDrive [[]Google Drive [|BaiduPCS
[|Dbank i Benchmark Il uniDrive

Finish time (sec)

0 Oregon VirginiaSao Paulo Ireland Singapore Tokyo Sydney

(b) Download

Figure 8: Average time to transfer 32 MB file to/from different CCSs.

N
(=}

‘O Dropbox

1+ OneDrive
<-Google Drive
£<Benchmark
$UniDrive :

-
(S,

Finish time (sec)
o 3

=2

12 16 20 24 28 32
File size (MB)
(a) Upload

4 8

N
o

‘O-Dropbox
1+OneDrive
<-Google Drive
#<Benchmark
$UniDrive

-
(3]

Finish time (sec)
o 3

(=)

0 4 8 12 16 20 24 28 32
File size (MB)
(b) Download

Figure 9: Average time to transfer different sized files, on Virginia node.

N

0
=< OneDrive % UniDrive ‘

-

o
HTE 0
&

-
S
+

:«,“* b N, w-!%
MWWW“

0 6 18 24
Time (hours)

(a) Upload

Finish time (sec)
-+

20
< |*OneDrive %UniDrive | +
o z
L. 15¢ =
2 Tomtoa, o
5 et X, 00
= 7 *'
i J

0 6 12 18 24
Time (hours)

(b) Download

Figure 10: Hourly variation in a day, transferring 32 MB file (Virginia).

our experiments*, UniDrive always completes the operation due to
its multi-cloud design.

Figure 8 shows the average time (with min/max value, plotted in
log scale) each CCS app and UniDrive take to upload or download
a 32 MB file (with randomly generated contents to avoid dedu-
plication and transfer suppression of segments) on geographically
distributed EC2 nodes. We see that UniDrive achieves the best per-
formance. Compared to the respective fastest CCS at each loca-
tion, UniDrive improves the upload and download time by 2.64 x
and 1.49x, respectively. The improvement over the multi-cloud
benchmark is about 1.5 X, which indicates the effectiveness of over-
provisioning and dynamic scheduling. In addition, UniDrive is
the most stable one: the gap between min and max time is much
smaller for all locations. We notice that some CCSs’ performance
is very poor, e.g., the two CCSs from China are not even accessi-
ble from certain locations. In the rest, we only compare against the
three U.S. CCSs.

*OneDrive is found to be inaccessible on Virginia node for a whole
day on December 20, 2013

Results for different file sizes are plotted in Figure 9 for the EC2

node in Virginia. We see that UniDrive and even the multi-cloud
benchmark outperform all native CCS apps for almost all file sizes.
Same phenomenon is observed on other EC2 nodes. Figure 10 fur-
ther compares the performance variation of UniDrive and OneDrive
(the fastest CCS there) for repeatedly uploading/downloading a 32
MB file during a one day period on the Virginia node. We can
clearly see that UniDrive achieves a higher and more stable net-
working performance over time, whereas OneDrive varies signif-
icantly. We notice that while UniDrive still remains the best for
the download, the performance improvement is not as good as the
upload. We found the reason being that the downlink bandwidth is
capped to 40 Mbps on our rented VMs.
End-to-End Time for Batch Sync: We continue to measure the
sync performance for batch file sync. We conduct many experi-
ments on different file sizes and file quantities, and report the rep-
resentative results on syncing a large number of small files (100 x
1 MB). Again, we have created random content to avoid segment
deduplication.

25 - - - Dri
~ Dropbox - OneDrive - Google Drive |- Intuitive | Benchmark - UniDrive
0200
o
L
e T 1AL
I x I =
'g 10011111 IIIII £ LI £ II III !
e I I 1] I I :
& 500]
0

Oregon Virginia Sao Paulo Ireland Singapore Tokyo Sydney

Figure 11: End-to-end sync time for batch file sync across EC2
nodes.

=]
(=]

Whole metadata
BBase + delta

2]
(=]

N
(=]
T

Metadata traffic (KB)
'S
o

P

200 400 600 800 1024
Number of files

Figure 13: Metadata sync traffic.

Figure 11 shows the average and min/max end-to-end (from each
uploading node to all the rest 6 downloading nodes) sync time
for a batch of 100 x 1 MB files. From the figure, we observe:
firstly, huge performance disparities can be found between differ-
ent CCSs and among different clients of the same CCS, due to their
different application protocol designs and network conditions. Sec-
ondly, UniDrive always achieves best and consistent performance
across all nodes. More concretely, the average (across all loca-
tions) sync time speedups of UniDrive, compared with the top 3
fastest CCSs at each location are 1.33x, 1.61x and 1.75X, respec-
tively. Thirdly, the multi-cloud benchmark achieves a medium level
of performance thanks to the aggregation of multiple clouds via era-
sure coding and parallel file transfer; whereas the intuitive multi-
cloud solution usually experiences the longest average sync time as
its performance is dominated by the slowest CCS. Finally, there is
a huge performance gap (1.4x on average) between UniDrive and
the multi-cloud benchmark, as compared to Figure 8 and Figure 9.
This confirms the effectiveness of data block over-provisioning and
dynamic scheduling techniques.

Stability and File Available Rate: Recall that dynamic schedul-
ing follows the availability-first and reliability-second principle, we
take a closer look at its effect by inspecting the number of sync’ed
files over time. Figure 12 plots the cumulative number of sync’ed
files along the time when syncing from Oregon node to the Virginia
node. We can see that UniDrive readies the files at a fast and steady
speed. The curves of different solutions have varying slopes and
may cross each other, indicating their varying performance during
the batch sync. The almost constant slope of UniDrive curve in-
dicates a stable performance. We further examine the variation of
average sync time across different locations for all solutions. Ta-
ble 2 shows the variance of average sync time in seconds over 7
EC2 nodes. We see that UniDrive is remarkably more stable (by
several folds) than any single CCS.

System Overhead: The system overhead is resulted from using
Web APIs (i.e., HTTP(s) connections), and the sync traffic of meta-
data. We compare the overhead of all solutions, using the captured

100

Cumulative #
of synced files

50 ==Dropbox
==+OneDrive
== Google Drive
==Intuitive
==Benchmark
0 g ... ==UniDrive
0 50 100 150

Time from file creation (sec)

Figure 12: Cumulative plot of # of sync’ed files over time (Vir-
ginia).

Finish time (sec)

)

10 %0

o

12 24 36 48
Repeated download experiments

Figure 14: Availability and download performance under dif-
ferent numbers (n) of unavailable clouds.

Table 2: Variance of average sync time across locations
Dropbox | OneDrive | GoogleDr. | UniDrive
Variance 134.2 140.9 558.0 33.1

traces in the batch sync experiments described above. The results
are shown in Table 3. We see that UniDrive has a similar network
overhead (around 1%) as that of most native apps. The intuitive
solution incurs the highest network overhead as it involves all the
5 CCSs for each file sync. UniDrive also involves 5 CCSs but the
overhead is suppressed with Delta-sync and the use of small version
file for the cloud update check. We further conduct experiments to
examine the effectiveness of Delta-sync in detail. We use UniDrive
to sync a total number of 1024 x 100 KB files, one after another
at every minute, and measure original metadata size at the sending
Oregon node and the actual metadata traffic (after Delta-sync) at the
receiving Virginia node. Figure 13 shows the results. We can see
that the metadata size grows linearly with the number of updated
files. With Delta-sync, the metadata traffic is drastically reduced,
by a factor of 13.1 from 74.7 KB to 5.7 KB, including some sparse
peaks corresponding to the transfer of new base files when the delta
is merged.

Table 3: Overall sync overhead

Dropbox | OneDrive | GoogleDr. | BaiduPCS

Overhead(%) 7.07 2.04 1.89 0.70
DBank Intuitive | Benchmark | UniDrive

Overhead(%) 0.96 14.93 1.01 1.04

Reliability: Complete CCS outage, though is rare, does happen
from time to time. To test the reliability of UniDrive and to study
the impact on the networking performance, we emulate service out-
age by randomly disabling n (n € [0, 4]) of all the five CCSs. We
pre-upload a 32 MB file to multi-cloud with the reliability require-
ment fulfilled. We then repeatedly download the file on the Tokyo
node every 5 minutes for 12 times for a specific n. Figure 14 shows
the result. As expected, UniDrive achieves the desired reliability
and security, i.e., unable to restore file content when only one CCS

w

-
o

lBeiing [l california [[]Finland [JHong Kong
|:|Michigan I:lNewZeaIand -Singapore -Toronto

-
°_\

1
=N
T

Throughput (Mbps)
o

<100KB

100KB - 1MB >1MB

Figure 15: Average upload throughput of UniDrive at different
locations.

is available (n = 4), since K is set to 2. Interestingly, we found
that the over-provisioning strategy may also contribute to reliabil-
ity. We set K, = 3, but the content can still be restored when
only 2 CCSs are available (i.e., n = 3).> Figure 14 further shows
the impact of the failure of CCSs on the downloading speed: with
fewer CCSs available, the performance drops and is more heavily
impaired by the slower CCSs.

7.3 Real World Usage

Deployment Statistics: We advertise UniDrive to CCS users
with different backgrounds (thus under different network condi-
tions, e.g., residential network, universities, companies), and col-
lect traces from 272 users worldwide. Results from reverse IP
lookup reveal that the installed devices spread over 21 sites across
America, Europe, Asia and Australia. Over 500 GB data consisting
of 96,982 files, of which more than a half are documents (28.3%)
and multimedia contents (30.5%), are uploaded to the multi-cloud
using UniDrive. The total volume of metadata traffic is reduced
from 3,955 MB to 141 MB via Delta-sync.

System Performance: During the user trial, the success rate of
the Web API requests from the underlying storage cloud objects
is only 82.5% (much worse than the results from PlanetLab experi-
ment in Section 3.2), while UniDrive still achieves a high reliability
of 98.4% in terms of each complete file upload and download op-
erations. Since not every user is using all the 5 clouds (some may
use only 3 clouds), the 1.6% failed operations occur when API calls
from more than N — 3 clouds fail at the same time. However, all file
operations will eventually complete when at least 3 clouds become
available. Figure 15 shows the average network throughput (plotted
in log scale) of file uploading at different geo-locations, grouped by
file size range. Results for downloading are omitted since they ex-
hibit similar phenomena. Figure 16 shows a close-up to reveal more
temporal performance: it plots the daily average upload throughput
for medium sized files (ranging from 100 KB to 1 MB) collected
over a one week period from Sept. 14 to Sept. 20, 2014. To avoid
being overly busy, we show only the performance at 4 locations.
From these two figures, we observe that the throughputs at differ-
ent locations are very close to each other within each given file
size range, and that the performance is also stable in temporal di-
mension. These results confirm that UniDrive delivers consistent
access experience across different geo-locations and over time. We
also see that larger files achieve higher and more stable networking
performance than smaller ones (below 100 KB) due to long (setup)
latency in the underlying Web APIs, which is consistent with our
experiments on EC2. UniDrive achieves an average throughput of
over 10 Mbps for files above 1 MB at almost all locations.

°In this particular case, one CCS is much slower than the rest four.
When it achieves its fair share, all other CCSs are over-provisioned.

Z4°Beﬁing f california AFinland %/ Hong Kong
e}
s3
S r i n"""'n"'lu. .u-"'n 1
22 gu@ll VX -_-,-_-;_-;g
g’17 AI"'"A""" 'H..A".." LD LLLTT |
o
5

0 1 =

3_ 4 5
Time (day)
Figure 16: Daily average upload throughput of UniDrive for

medium sized files over one week.

8. CONCLUSION

In this paper, we conduct online user survey and global mea-
surement study on five representative consumer cloud storage ser-
vices, revealing their potential issues and diversified networking
performance. These insights motivate the design and implemen-
tation of UniDrive, a CCS app that delivers superior networking
performance in the multi-cloud, while avoiding the reliability and
security risks of using a single cloud. UniDrive enhances relia-
bility and security via careful placement of partial contents to dif-
ferent clouds. A suite of networking performance enhancing tech-
niques, including block over-provisioning and dynamic scheduling
with in-channel probing, are proposed to mask network fluctua-
tions and boost networking performance by maximizing parallel
transfer opportunities and exploiting more the faster clouds. Ex-
tensive experiments and real-world trials across geographically dis-
tributed locations demonstrate that UniDrive produces much im-
proved and consistent sync performance. Although some of the
individual techniques we use are not technically all that novel or
surprising, the combination of the whole is interesting, deep, and
non-trivial enough to make UniDrive a solid system overall. We
gain the insight that, through a careful design, using a few simple
public RESTful Web APIs of multiple CCSs can indeed outper-
form native CCS apps that use advanced private APIs, in addition
to enhanced reliability and security.

9. ACKNOWLEDGEMENTS

The research was supported by grants from the National Basic
Research Program (973 Program) under grant NO.2014CB347800
and NSFC under grant NO. 61520106005.

10. REFERENCES

[1] Spec sfs 2014. https://www.spec.org/sfs2014/.
[2] Systematic code. http:
//en.wikipedia.org/wiki/Systematic_code.
[3] Unidrive.
https://code.google.com/p/unidrive—hust/.
[4] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K.
Reiter, and J. J. Wylie. Fault-scalable byzantine fault-tolerant
services. ACM SIGOPS Operating Systems Review,
39(5):59-74, 2005.
H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon. Racs:
a case for cloud storage diversity. In SoCC, 2010.
A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P.
Wattenhofer. Farsite: Federated, available, and reliable
storage for an incompletely trusted environment. In OSDI,
2002.

[5

—

[6

—_

[7] C.Basescu, C. Cachin, L. Eyal, R. Haas, A. Sorniotti,
M. Vukolic, and I. Zachevsky. Robust data sharing with
key-value stores. In DSN, 2012.

[8] N. M. Belaramani, M. Dahlin, L. Gao, A. Nayate,

A. Venkataramani, P. Yalagandula, and J. Zheng. Practi
replication. In NSDI, volume 6, pages 5-5, 2006.

[9] A. Bessani, M. Correia, B. Quaresma, F. André, and
P. Sousa. Depsky: dependable and secure storage in a
cloud-of-clouds. In EuroSys, 2011.

[10] K. D. Bowers, A. Juels, and A. Oprea. Hail: a
high-availability and integrity layer for cloud storage. In
CCS, 2009.

[11] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and
T. Kraska. Building a database on s3. In SIGMOD, 2008.

[12] C. Cachin, R. Haas, and M. Vukolic. Dependable storage in
the intercloud. IBM Research, 2010.

[13] I Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras.
Benchmarking personal cloud storage. In IMC, 2013.

[14] 1. Drago, M. Mellia, M. M. Munafo, A. Sperotto, R. Sadre,
and A. Pras. Inside dropbox: understanding personal cloud
storage services. In IMC, 2012.

[15] A.J. Feldman, W. P. Zeller, M. J. Freedman, and E. W.
Felten. Sporc: Group collaboration using untrusted cloud
resources. In OSDI, 2010.

[16] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file
system. In SOSP, 2003.

[17] Google. Peering & content delivery. https://peering.
google.com/about/delivery_ecosystem.html.

[18] S. Han, H. Shen, T. Kim, A. Krishnamurthy, T. Anderson,
and D. Wetherall. Metasync: File synchronization across
multiple untrusted storage services. University of Washington
Technical Report, 2014.

[19] J. Hendricks, S. Sinnamohideen, G. R. Ganger, and M. K.
Reiter. Zzyzx: Scalable fault tolerance through byzantine
locking. In DSN, 2010.

[20] W. Hu, T. Yang, and J. N. Matthews. The good, the bad and
the ugly of consumer cloud storage. ACM SIGOPS
Operating Systems Review, 2010.

[21] Y. Hu, H. C. Chen, P. P. Lee, and Y. Tang. Nccloud:
Applying network coding for the storage repair in a
cloud-of-clouds. In FAST, 2012.

[22] J. S. P. Jason K. Resch. Aont-rs: Blending security and
performance in dispersed storage systems. In FAST, 2011.

[23] R. Kotla, L. Alvisi, and M. Dahlin. Safestore: a durable and
practical storage system. In USENIX ATC, 2007.

[24] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,

W. Weimer, and B. Zhao. Oceanstore: An architecture for
global-scale persistent storage. In ASPLOS, 2000.

[25] A.Li, X. Yang, S. Kandula, and M. Zhang. CloudCmp:
comparing public cloud providers. In IMC, 2010.

[26] Z. Li, C. Wilson, Z. Jiang, Y. Liu, B. Y. Zhao, C. Jin, Z.-L.
Zhang, and Y. Dai. Efficient batched synchronization in
dropbox-like cloud storage services. In Middleware. 2013.

[27] F. Liu, S. Shen, B. Li, B. Li, and H. Jin. Cinematic-quality
vod in a p2p storage cloud: Design, implementation and
measurements. JSAC, 31(9):214-226, 2013.

[28] F. Liu, Y. Sun, B. Li, B. Li, and X. Zhang. Fs2you:
Peer-assisted semipersistent online hosting at a large scale.
TPDS, 21(10):1442-1457, 2010.

[29] P. G. Lopez, M. Sanchez-Artigas, S. Toda, C. Cotes, and

J. Lenton. Stacksync: Bringing elasticity to dropbox-like file
synchronization. In Middleware, 2014.

[30] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,

M. Dahlin, and M. Walfish. Depot: Cloud storage with
minimal trust. In OSDI, 2010.

[31] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,

M. Dahlin, and M. Walfish. Depot: Cloud storage with
minimal trust. 7TOCS, 2011.

[32] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber, and
E. Weippl. Dark clouds on the horizon: Using cloud storage
as attack vector and online slack space. In SEC, 2011.

[33] A. Muthitacharoen, B. Chen, and D. Mazieres. A
low-bandwidth network file system. In SOSP, 2001.

[34] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy:
A read/write peer-to-peer file system. In OSDI, 2002.

[35] T. G. Papaioannou, N. Bonvin, and K. Aberer. Scalia: an
adaptive scheme for efficient multi-cloud storage. In SC,
2012.

[36] M. O. Rabin. Efficient dispersal of information for security,
load balancing, and fault tolerance. JACM, 1989.

[37] M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log-structured file system. In SOSP,
2003.

[38] F. B. Schmuck and R. L. Haskin. Gpfs: A shared-disk file
system for large computing clusters. In FAST, 2002.

[39] A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky,
and D. Shaket. Venus: Verification for untrusted cloud
storage. In CCSW, 2010.

[40] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
hadoop distributed file system. In MSST, 2010.

[41] K. Srinivasan, T. Bisson, G. R. Goodson, and K. Voruganti.
idedup: latency-aware, inline data deduplication for primary
storage. In FAST, 2012.

[42] E. Stefanov, M. van Dijk, A. Juels, and A. Oprea. Iris: A
scalable cloud file system with efficient integrity checks. In
ACSAC, 2012.

[43] J. Stribling, Y. Sovran, I. Zhang, X. Pretzer, J. Li, M. F.
Kaashoek, and R. Morris. Flexible, wide-area storage for
distributed systems with wheelfs. In NSDI, 2009.

[44] M. Vrable, S. Savage, and G. M. Voelker. Cumulus:
Filesystem backup to the cloud. In FAST, 2009.

[45] M. Vrable, S. Savage, and G. M. Voelker. Bluesky: a
cloud-backed file system for the enterprise. In FAST, 2012.

[46] H. Wang, R. Shea, F. Wang, and J. Liu. On the impact of
virtualization on dropbox-like cloud file
storage/synchronization services. In IWQoS, 2012.

[47] T. N. Web. Dropbox reaches 300m users, adding on 100m
users in just six months. http:
//thenextweb.com/insider/2014/05/29/.

[48] T. N. Web. Microsoft apologizes for three-day outlook.com
outage, says caching issue was to blame.
http://thenextweb.com/microsoft/.

[49] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and
C. Maltzahn. Ceph: A scalable, high-performance distributed
file system. In OSDI, 2006.

[50] B. Welch, M. Unangst, Z. Abbasi, G. A. Gibson, B. Mueller,
J. Small, J. Zelenka, and B. Zhou. Scalable performance of
the panasas parallel file system. In FAST, 2008.

[51] Y. Zhang, C. Dragga, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Viewbox: Integrating local file systems
with cloud storage services. In FAST, 2014.

