
Relax: Composable Abstractions for End-to-End
Dynamic Machine Learning

Ruihang Lai∗
Carnegie Mellon University

Pittsburgh, USA

Junru Shao∗†
OpenAI

San Francisco, USA

Siyuan Feng∗
Shanghai Jiao Tong

University
Shanghai, China

Steven Lyubomirsky∗†
NVIDIA

Santa Clara, USA

Bohan Hou
Carnegie Mellon University

Pittsburgh, USA

Wuwei Lin†
OpenAI

San Francisco, USA

Zihao Ye
University of Washington

Seattle, USA

Hongyi Jin
Carnegie Mellon University

Pittsburgh, USA

Yuchen Jin†
Hyperbolic

San Francisco, USA

Jiawei Liu†
University of Illinois
Urbana-Champaign
Champaign, USA

Lesheng Jin†
Hyperbolic

San Francisco, USA

Yaxing Cai†
NVIDIA

Santa Clara, USA

Ziheng Jiang†
ByteDance
Seattle, USA

Yong Wu†
NVIDIA

Santa Clara, USA

Sunghyun Park†
NVIDIA

Santa Clara, USA

Prakalp Srivastava†
Netflix

Los Gatos, USA

Jared Roesch†
NVIDIA

Santa Clara, USA

Todd C. Mowry
Carnegie Mellon University

Pittsburgh, USA

Tianqi Chen
Carnegie Mellon University

Pittsburgh, USA
NVIDIA

Santa Clara, USA

Abstract
Dynamic shape computations have become critical in mod-
ern machine learning workloads, especially in emerging
large language models. The success of these models has
driven the demand for their universal deployment across
a diverse set of backend environments. In this paper, we
present Relax, a compiler abstraction for optimizing end-to-
end dynamic machine learning workloads. Relax introduces
a cross-level abstraction that encapsulates computational
graphs, loop-level tensor programs and external libraries
calls in a single representation. Relax also introduces first-
class symbolic shape annotations to track dynamic shape
computations globally across the program, enabling dynamic
shape–aware cross-level optimizations. We build an end-to-
end compilation framework using the proposed approach

∗Equal contribution.
†Work done while at OctoAI (now acquired by NVIDIA).

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ASPLOS ’25, Rotterdam, Netherlands.
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1079-7/25/03
https://doi.org/10.1145/3676641.3716249

to optimize dynamic shape models. Experimental results on
LLMs show that Relax delivers performance competitivewith
state-of-the-art systems across various GPUs and enables
deployment of emerging models to a broader set of emerging
environments, including mobile phones, embedded devices,
and web browsers.
CCS Concepts: • Software and its engineering → Do-
main specific languages.

Keywords: Machine Learning Compiler; Dynamic-Shape
Machine Learning
ACM Reference Format:
Ruihang Lai, Junru Shao, Siyuan Feng, Steven Lyubomirsky, Bohan
Hou, Wuwei Lin, Zihao Ye, Hongyi Jin, Yuchen Jin, Jiawei Liu,
Lesheng Jin, Yaxing Cai, Ziheng Jiang, Yong Wu, Sunghyun Park,
Prakalp Srivastava, Jared Roesch, Todd C. Mowry, and Tianqi Chen.
2025. Relax: Composable Abstractions for End-to-End Dynamic
Machine Learning. In Proceedings of the 30th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2 (ASPLOS ’25), March 30–April 3,
2025, Rotterdam, Netherlands. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3676641.3716249

1 Introduction
Machine learning (ML) applications are now ubiquitous in
everyday life and the broader economy. The arrival of GPT-4

998

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3676641.3716249
https://doi.org/10.1145/3676641.3716249
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3676641.3716249&domain=pdf&date_stamp=2025-03-30

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Ruihang Lai et al.

Code Generation

Cross-level abstraction that encapsulates
high-level computation graph, tensor
programs, libraries and their interactions
@tensorir_function
def mm(X: Buffer(("n", 512) "f32"), W: Buffer((512, 1536), "f32"),
 Y: Buffer(("n", 1536), "f32")):
 n = sym_var()
 for i, j, k in grid(n, 1536, 512):
 with block():
 with init():
 Y[i, j] = 0
 Y[i, j] += X[i, k] * W[k, j]

def main(x: Tensor(("n", 512), "f32"), w: Tensor((512, 1536), "f32")):
 n = sym_var()
 with dataflow():
 lv0: Tensor((n, 1536), "f32") = call_tir(mm, [x, w], Tensor((n, 1536),"f32"))
 lv1: Tensor((n, 3, 8, 64), "f32") = reshape(lv0, shape(n, 3, 8, 64))
 lv2: Tensor((n, 8, 64), "f32") = call_dps_library(
 "cutlass.attention", [lv1], Tensor((n, 8, 64), "f32")
)
 …

ML models

Target Code and Deployable Module

ML models

Our Approach

First-class symbolic shape
annotations to enable
dynamic shape aware analyses
and optimizations

Computational Graph IR

Tensor Program IR

Target Code

Multi-level ML Compilers

Multi-level abstractions
with optimizations in
each level

single-shot
lowering

other optional layers of IRs

Libraries

Cross-level optimizations
across computational graph,
tensor program, and libraries,
including:
 - cross-level dynamic
 shape-aware operator fusion
 - dynamic shape-aware memory
 planning
 - cross-level tensor program
 workspace lifting
 - CUDA Graph offloading
 - tensor program optimizations
 via partial lowering

…

Figure 1. Overview of our approach. We also present a cross-level abstraction that encapsulates the computational graph,
foreign tensor program and the external library function levels. We introduce first-class symbolic shape annotations to track
dynamic shape computations globally across the program, and enable dynamic shape–aware optimizations across levels.

and open-source large language models (LLMs) [6, 37, 43, 44,
46] has created promising opportunities for building even
more powerful modern AI systems for processing text, im-
ages, audio, and more. The success of these models has also
led to growing demand for their deployment across a diverse
set of backend environments, including servers, personal
computers, vehicles, and mobile devices.
Machine learning frameworks [1, 30] are responsible for

deploying many of these models to diverse backends. ML
compilers [2, 7, 24, 27] aim to reduce the gap between model
and backends by ingesting model computations into com-
mon program abstractions, performing optimizations such
as operator fusion, and generating high-performance code
on a diverse set of platforms. However, much engineering
effort is required to support the tensor operators in a model
for different hardware backends, particularly since most of
these models make use of dynamic tensor shapes. Dynamic
shapes contain variables that may depend on program values,
which makes it more difficult to perform crucial optimiza-
tions like static memory planning. For example, language
models must handle variable-sized input messages, KV-cache
context length, vocabulary sizes, and other sources of shape
dynamism.
Typical ML compilers include multiple levels of abstrac-

tions (or intermediate representations) and single shot low-
erings across levels. The high-level computational graph [27,
34, 35] describes a model using dataflow graph of high-level
tensor operators (e.g., matmul, reshape) to facilitate global
computation rewrites. Tensor programs [16, 22, 42] describe
tensor operators with low-level loops and indexed buffer
accesses, to enable fine-grained kernel optimizations (such

as loop tiling) at this level. Operator libraries [9, 41] allow for
offloading a tensor operator to vendor optimized routines.

Most end-to-end ML compilers use computational graphs
as the high-level representation and treat tensor programs
and operator libraries as foreign functions that are usually
opaque. Dynamic shapes are usually handled at each level
within each function. Relay [35] and IREE [27] handles dy-
namic shapes in computational graphs through “unknown”
annotations and do not track relations between dynamic
shapes. The PyTorch compiler [2] enables just-in-time (JIT)
graph tracing and handles dynamic shape tracking within
each traced function. The JIT approach eliminates the need
for shape tracking across function boundaries, but also lim-
its its applications on emerging platforms with constrained
environments, such as mobile and WebGPU. DietCode [48],
CoRA [15], and SparseTIR [47] focus on optimizing dynamic
shapes within each tensor program. Halide [33] tracks dy-
namic shapes in tensor programs and provides primitives to
call external library functions from tensor programs.
Despite the developments in dynamic shape handling at

each level and function, challenges still exist in optimiza-
tions across these levels and functions. First, as we target
a broad set of emerging platforms, we must enable ahead-
of-time (AOT) compilation, which necessitates full program
optimizations across functions. Additionally, user-defined
operators such as customized quantization decode require
computational graph optimizations to be aware of foreign
functions. Finally, single-shot lowering makes it harder to
analyze or transform tensor programs first and then use the
results to inform high-level graph optimizations. Dynamic
shape tracking threads through all these challenges in every

999

Relax: Composable Abstractions for End-to-End Dynamic Machine Learning ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

incremental transformation, as losing the shape relation in-
formation can significantly hinder the optimizations we can
perform across operators and functions in the program.

To address these challenges, we introduce Relax, a holistic
AOT compiler program abstraction for emerging end-to-end
dynamic machine learning models on emerging platforms.
Relax enables an abstraction that encapsulates levels of com-
putational graphs, loop-level tensor programs and external
library functions at the same time, which we call cross-level
abstraction in this paper.1 We also introduce first-class sym-
bolic shapes to track and represent the relations of dynamic
shape dimensions. Relax uses variables to represent symbolic
shape dimensions and employs symbolic deductions to track
dynamic shapes across tensor operators, subgraph function
calls and foreign function calls of tensor programs and exter-
nal library functions statically when possible, with a dynamic
fallback as needed. The cross-level abstractionwith first-class
symbolic shape allows for analyses and optimizations across
these abstraction levels, and meanwhile preserves symbolic
shape information in IR during optimizations. We introduce
a collection of optimizations to enable dynamic shape-aware
operator fusion, tensor program workspace lifting, memory
optimization, graph offloading and tensor operator optimiza-
tions. Finally, we build an end-to-end compilation framework
on top of these elements. This paper makes the following
contributions:
• We propose a design for cross-level abstractions to enable

optimizations and analyses across the traditional levels of
abstractions in ML frameworks.
• We present a program abstraction with a first-class sym-

bolic shape approach that tracks dynamic shape relations
globally across tensor operators, subgraph function calls
and foreign function calls of tensor programs and external
libraries, enabling full-program symbolic shape tracking
and dynamic shape–aware optimizations across abstrac-
tion levels.
• We build an AOT end-to-end compilation framework to
enable full program deployment of emerging models to
diverse hardware backends, including many emerging
backends that are not well supported by established frame-
works.
Experimental results show that Relax compiles and op-

timizes emerging LLMs onto a broad set of emerging de-
vices and environments, including mobile phones, embed-
ded devices, and web browsers via WebGPU. Additionally,
Relax delivers competitive performance to heavily optimized
platform-specific solutions. Relax is incorporated into a ma-
jor open-source project and enables support for the universal
deployment of emerging machine learning models.

1We leverage other lower layers in ML compilers for GPU source code
generation.

Table 1. Annotations in Relax with examples.

Annotation Examples Explanation

Object Object Any runtime value

Shape Shape([n, 4])
Shape(ndim=2)

Symbolic shape value (n, 4)
Shape with two dimensions

Tensor Tensor((n, 4), "f32")
Tensor(ndim=None, dtype="f32")

Tensor with symbolic shape (n, 4)
Tensor with unknown dimensions

Tuple Tuple[Tensor((n, 4), "f32"), Object] Tuple of a Tensor and an Object

Callable Callable(
 [Tensor(("n", 4), "f32")],
 Tensor(("n * 4",), "f32")
)

Function that takes a (n, 4) Tensor
and returns a (n*4,) Tensor

2 Overview
This section describes the key insights of our approach and
gives an overview of the paper. Figure 1 summarizes our
overall approach, focusing on two key designs that enable
compiler optimizations across all levels of abstractions for
dynamic machine learning models.
First, we observe that ML compilers often need to go

through several abstraction levels to bring a machine learn-
ing model to a target platform. Typical layers include com-
putational graphs, tensor programs and external libraries.
Traditionally, ML compilers focus on optimizations within
each individual abstraction level and do a uni-directional
single-shot lowering from one level to the next level. Relax
brings computational graphs, tensor programs, and libraries
into a single unified cross-level abstraction, allowing the in-
teraction of those components with foreign function calls to
tensor programs and external library functions. This design
allows us to incrementally optimize or partially lower por-
tions of the computation using different approaches, with
analyses from all abstraction levels taken into account.
Second, we observe that while emerging machine learn-

ing workloads involve dynamic shape computations, we can
perform a substantial amount of static analyses and optimiza-
tions by considering the relations between shapes. Thus, we
introduce annotations that can track the shapes of intermedi-
ate computations through symbolic variables and symbolic
shape computations. Our approach globally tracks these dy-
namic shape computations across subgraph function calls
and foreign function calls of the tensor program and external
library levels to represent dynamic shapes throughout the
program and enable dynamic shape–aware optimizations.

We introduce Relax’s abstraction design in §3, and discuss
a concrete set of cross-level compiler optimizations enabled
by our design in §4.

3 Relax Abstraction
This section introduces the overall Relax abstraction. We
start with the language constructs, followed by the first-class
symbolic shape and cross-level abstractions in Relax.

1000

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Ruihang Lai et al.

Annotation

def main(x: Tensor(("n", 4), "f32")) -> Tensor(("n * 2",), "f32"):
 n = sym_var()
 with dataflow():
 lv0: Tensor((n, 4), "f32") = call_tir(exp, [x], Tensor((n, 4), "f32"))
 lv1: Tensor((n, 4), "f32") = call_dps_library(
 "cutlass.rms_norm", [lv0], Tensor((n, 4), "f32")
)
 f0: Callable = subfunc
 lv2: Tensor((n * 4,), "f32") = subfunc(lv1)
 lv3: Tuple[
 Tensor((n * 2,), "f32"), Tensor((n * 2,), "f32")
] = split(lv2, sections=2)
 lv4: Tensor((n * 2,), "f32") = lv3[0]
 return lv4

def subfunc(x: Tensor(("n", 4), "f32")) -> Tensor(("n * 4",), "f32"):
 n = sym_var()
 with dataflow():
 lv0: Tensor((n * 4,), "f32") = flatten(x)
 lv1: Tensor((n * 4,), "f32") = relu(lv0)
 return lv1

@tensorir_function
def exp(X: Buffer(("n", 4) "f32"), Y: Buffer(("n", 4), "f32")):
 ...

Dataflow block

Subgraph function call

Foreign function call

Foreign function (tensor program)

Figure 2. Key elements of Relax abstraction.

3.1 Language Constructs
Relax is an imperative compiler abstraction with first-class
functions, focusing on operating tensors at a high level (the
“graph level,” as most ML compilers refer to it). Relax pro-
grams apply high-level operators to entire tensors and can
pass tensors (or tuples of tensors) among functions, or invoke
lower-level tensor programs or external library functions for
loop-level operations on tensors. This section describes three
main elements of Relax: structural annotations, dataflow
blocks, and function calls both within and across levels of
abstractions. These constructs bring the whole system to-
gether by offering symbolic shape guidance in compiler op-
timizations of joint transformations across graph level and
foreign tensor program level, and meanwhile preserving the
symbolic shape information in the program during these
transformations.
Annotations. Each value in Relax is associatedwith an anno-
tation that conveys structural information, similar to a static
type. Table 1 summarizes different annotations in Relax and
their usage examples and explanations respectively. We de-
sign the annotation syntax to be embeddable in Python AST,
and quote symbolic expressions into strings (e.g., "n*4") in
function signatures, when the symbolic variables are yet to
be declared.2 To enrich the shape expressiveness of annota-
tions and ensure the shape annotation coverage, we reuse
the loop-level tensor program expression system, so that
shape annotations support all integer expressions that ten-
sor programs support, and the compiler symbolic expression
analyses (e.g., expression equality proof) can take advantage
of common expressions. Annotations indicate at compile
time the overall types (e.g., tensor, tuple) and additional in-
formation about values, such as the shape and data type of a
tensor. Annotations form the basis for first-class symbolic
shapes and cross-level abstractions.

2The quoted strings can be read as normal symbolic expressions. This syntax
simplifies parsing in python ast and can be changed.

def symbolic_shape_fn(x: Tensor(("n", 2, 2), "f32")):
 n, m = sym_var(), sym_var()
 lv0: Tensor((n, 4), "f32") = reshape(x, shape(n, 4))
 lv1: Tensor((n * 4,), "f32") = flatten(lv0)
 lv2: Tensor(ndim=1, dtype="f32") = unique(lv1)
 lv3 = match_cast(lv2, Tensor((m,), "f32"))
 lv4: Tensor((m,), "f32") = exp(lv3)
 return lv4

def any_shape_fn(x: Tensor((?, 2, 2), "f32")):
 n = get_shape_value(x, axis=0)
 lv0: Tensor((?, 4), "f32") = reshape(x, (n, 4))
 lv1: Tensor((?,), "f32") = flatten(lv0)
 lv2: Tensor(?, "f32") = unique(lv1)
 lv3: Tensor(?, "f32") = exp(lv2)
 return lv3

Shape annotation with unknown ? dimensions

First-class symbolic shape annotation

Figure 3. Comparison of first-class symbolic shape annota-
tion with unknown dynamic shape annotation. First-class
symbolic shape enables comprehensive symbolic analysis
and facilitates advanced dynamic shape–aware optimiza-
tions.

Dataflow Blocks. A dataflow block in Relax demarcates a
side effect–free program (sub-)region without control flows,
i.e., a straight-line sequence of pure operations, in order
to simplify program transformations. For example, when
performing dead code elimination over Relax dataflow blocks,
one can safely remove unused operators without having to
consider whether this could affect the visible behavior of the
program by removing an operation with side effects.
Function Calls. Relax incorporates function calls that can
be within the same level of abstraction (i.e., allowing one
graph-level function to invoke another graph-level function)
or across levels of abstraction, namely allowing graph-level
functions to call foreign tensor program functions and ex-
ternal libraries. Calling foreign loop-level tensor programs
and external library functions serves as a foundational el-
ement for cross-level abstractions, as explored in detail in
§3.3. We use TensorIR [16] as the loop-level tensor program
abstraction, though the same principle can be used for other
loop-level abstractions.

3.2 First-Class Symbolic Shape Abstraction
The shape of a tensor is very useful information in the con-
text of ML frameworks, especially for memory planning.
Oftentimes, however, tensor shapes are unknown at compile
time and must be dealt with dynamically. One approach for
reasoning about dynamic shape dimensions is to introduce
an any (or unknown) value to represent dynamic dimensions,
as in ONNX [3], Relay [36], and some MLIR dialects [27]. Un-
fortunately, this approach fails to preserve potentially useful
information, like relations or constraints between shape di-
mensions (e.g., if one tensor has dimension𝑛, another may be
4𝑛). Such information is valuable for compiler optimizations,
whereas marking the dimension as any erases it entirely.

1001

Relax: Composable Abstractions for End-to-End Dynamic Machine Learning ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

We instead introduce a first-class symbolic shape annota-
tion (shown in Figure 3) for better reasoning and optimiza-
tions of dynamic shape models. A symbolic shape annotation
describes each shape dimension using a symbolic expression,
comprised of integer variables and constants. Consequently,
for fully static models, Relax shape annotations subsumes
existing static shape–based annotations. For models with a
mixed set of dynamic and static dimensions, Relax not only
expresses the shape dimensions symbolically but tracks the
symbolic relations over dimensions as well. These symbolic
shape relations help us apply more dynamic shape–aware
optimizations. For example, we will know the total number
of elements after the flatten operator is 4𝑛 in Figure 3 and
is the same as the input, suggesting potential buffer reuses.

Besides serving as annotations, a symbolic shape can also
be used as a first-class value in the computation. For example,
the reshape operator in Figure 3 takes the symbolic shape
(𝑛, 4) as input and outputs a tensor valuewith the same shape.
Symbolic shape expressions can also be used to construct
arguments to tensor functions.
It is not always possible to track the shape relations at

compile time. We cannot deduce the output shape of data-
dependent operators, e.g., unique in Figure 3, whose output
tensor shape depends on the runtime values of its input.
For such cases, we provide coarse-grained annotations (e.g.,
Shape(ndim=2) in Table 1, meaning that the shape has two
dimensions but both are unknown). To reason about such
cases, we introduce a special construct match_cast that as-
serts a symbolic shape annotation for a value, allowing for
the introduction of new symbolic variables. The compiler
inserts runtime checks for each match_cast, throwing an
error if a constraint is violated. In our particular example in
Figure 3, though the compiler does not know the shape of
lv2 after the unique operator, one can use match_cast to as-
sume that it has shape (𝑚,) (as in its alias lv3). match_cast
can be inserted by both front-ends and compiler passes to
suggest more specific symbolic shapes and serves as a valu-
able tool for developers to indicate shape information within
programs.

3.3 Cross-Level Abstraction
This section describes the constructs in Relax that enable
cross-level abstractions. Our main goal is to design primi-
tives that naturally represent and optimize interactions of
computational graphs, foreign tensor programs and libraries.

To achieve this goal, we must reconcile the different char-
acteristics of each abstraction level. Specifically, computa-
tional graph abstractions favor pure operators that return a
new tensor for each operation. This allows us to organize
computations through directed acyclic graphs and perform
effective graph rewriting without worrying about side effects.
On the other hand, most tensor programs and libraries of
low-level computations adopt destination-passing style [38]
(DPS) interfaces, which take the computation result tensors

Graph-level end-to-end dynamic ML model

def main(x: Tensor(("n", 128), "f32"), w: Tensor((128, 256), "f32")):
 n = sym_var()
 with dataflow():
 lv0: Tensor((n, 256), "f32") = call_tir(
 mm, [x, w], Tensor((n, 256),"f32")
)
 lv1: Tensor((n, 256), "f32") = relu(lv0)
 lv2: Tensor((n, 256), "f32") = call_dps_library(
 "cutlass.rms_norm", [lv1], Tensor((n, 256), "f32")
)
 …

Loop-level tensor programs

@tensorir_function
def mm(X: Buffer(("n", 128) "f32"), W: Buffer((128, 256), "f32"),
 Y: Buffer(("n", 256), "f32")):
 n = sym_var()
 for i, j, k in grid(n, 256, 128):
 with block():
 with init():
 Y[i, j] = 0
 Y[i, j] += X[i, k] * W[k, j]

call library
functions from

graph level

call loop-level
tensor programs
from graph level

Figure 4. Cross-level abstractions: Graph-level function calls
and communicates with loop-level TensorIR using call_tir,
and invokes library functions via call_dps_library.

def call_tir(tir_func, args, annotation, sym_args):
 # Allocate output tensor
 output = alloc_tensor(annotation.shape, annotation.dtype)
 # Call low-level function in destination-passing style
 tir_func(*args, output, *sym_args)
 return output

Figure 5. The semantics explanation of call_tir.

as inputs and directly mutate them, rather than allocating
and returning new tensors. For these cases, we introduce a
requirement in Relax to pass input and output memory ex-
plicitly to low-level tensor programs, conforming to the DPS.
The DPS abstracts away memory management concerns
from low-level code, thereby simplifying code generation.

We introduce two foreign function call primitives as shown
in Figure 4 to bridge abstraction levels. First, we introduce
call_tir, which allows for direct invocation to a tensor
program from the graph level. We design the semantics of
call_tir (Figure 5) to directly map to a DPS call of the low-
level function. This approach allows us to assign high-level
semantics to call_tirs during graph-level transformations
and lower them to DPS calls with memory management later.

Notably, call_tir also takes the shape annotation of the
output as well as potentially other symbolic expressions
as arguments, in order to pass shape information from the
graph level to loop-level tensor programs. Such shape infor-
mation is crucial for optimizations on loop-level programs,
like operator fusion. By flowing the symbolic shape informa-
tion from the graph level to tensor programs, we can allow
tensor programs to generate code that specializes to most
static dimensions and only uses dynamic dimensions when
necessary (like dimension 𝑛 in Figure 4).
Second, we introduce the call_dps_library primitive

to allow direct calls into foreign operator libraries from the
graph level. In practice, it introduces great flexibility in pro-
totyping, since external routines can be easily called from a

1002

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Ruihang Lai et al.

lv0

Partial lowering

Analysis feedback

Cross-level transform

call_dps_library call_tir
high-level
operators

temp workspace
allocation in

tensor program

lv1 lv2

tensor
program

 for i:
 B[i] = max(A[i], 0)

lv1 is an element-wise operator and is
invariant to scaling.
Reduces cost of annotating these
properties per op. Generalize support
to more custom ops.

 ws = alloc()
 ...

 ws = param[2]
 ...

alloc in graph-level
passed as param to

tensor program

lv0 lv1 lv2

lv0 lv1 lv2

lv0 lv1 lv2 lv0 lv1 lv2

Figure 6. Examples of common optimization patterns that
leverages cross-level abstraction.

Relax program. The convention of call_dps_library mir-
rors those of call_tir, except that the callee is instead the
name of a library function. These functions are supplied by
a registry and linked to the final runnable module.

It is worth noting that we closely combine graphs, tensor
programs and libraries, all of which are critical in ML com-
pilers, and meanwhile we leverage and complement other
lower layers in compilers for GPU source code generation.
Benefits of cross-level abstractions. Figure 6 summarizes
common optimization patterns enabled by cross-level ab-
stractions:

Partial lowering: Instead of making all lowering decisions
in a single shot, a pass can make dispatch decisions or loop-
level optimizations for part of the computations. This pattern
is helpful, for example, whenwewant to replace the lowering
decision of a fused operator to different libraries; we can then
pass the program to later passes to handle other operators.

Analysis feedback: We can analyze loop patterns of tensor
programs and automatically annotate their operator prop-
erties. Typically, compiler developers need to manually an-
notate properties for each individual high-level operator in
the system. By adopting cross-level abstraction and instead
relying on analysis-based properties, we can greatly reduce
the engineering cost of annotation on high-level operators.

Cross-level transforms: Sometimes, optimization opportuni-
ties can only be disclosed after some low-level optimizations.
For example, tensor program analysis may decide that a ten-
sor program needs a temporary workspace. In this case, we
can jointly transform the tensor program and graph level
to insert the workspace allocation at graph level, allowing
the workspace to also participate as part of global memory
planning.

While each optimization pattern is useful on its own, the
real benefit emerges when we combine them. For example,

def subfn(s: Shape(["n", "m"])) -> Tensor(("n * m",), "f32"):
 ...

def subgraph_func_shape_deduce_example(
 x: Tensor(("n",), "f32"),
 y: Shape(ndim=2)
):
 n = sym_var()
 f0: Callable([Shape(["n", "m"])], Tensor(("n * m",), "f32")) = subfn
 lv0: Tensor((n * 4,), "f32") = f0(shape(n, 4))
 lv1: Tensor((12,), "f32") = subfn(shape(3, 4))
 lv2: Tensor(((n + 1) * 4,), "f32") = subfn(shape(n + 1, 4))
 lv3: Tensor(ndim=1, dtype="f32") = subfn(y)
 ...

Figure 7. Exemplary scenarios of dynamic shape deduction
that involve subgraph function calls. subfn contains a signa-
ture that takes shape with symbolic variable 𝑛,𝑚 and returns
an one-dimensional Tensor that contains shape 𝑛 ∗𝑚. The
annotations in f0, lv0-lv3 are deduced by the system.

we can perform partial lowering to libraries and then opti-
mize the remaining components using other techniques. We
will discuss cross-level optimizations in detail in §4.

4 Cross-Level Algorithms and
Optimizations

This section describes a concrete set of algorithms and opti-
mizations that make use of the proposed cross-level abstrac-
tions in an end-to-end compilation framework.

4.1 Shape Annotation Deduction
The symbolic shapes in annotations serve as an important
source of information for optimization passes. To maximize
the use of this information, Relax automatically tracks and
deduces symbolic shape annotations of intermediate val-
ues not only during model construction but also between
compiler passes, allowing passes to deduce equalities and
relations between shapes and enables extra optimizations.
Meanwhile, this also increases the demand for deduction
efficiency, as the deduction runs for every pass.

Each tensor operator has a registered shape deduction rule
that takes the inputs’ shape annotations and values (such as
the case of reshape) and returns the output annotations. We
adopt a forward deduction method that deduces the annota-
tion of an expression based on its inputs. For foreign function
call primitives call_tir and call_dps_library, the out-
put annotations are part of their arguments (Figure 4) and
will be directly used for deduction. Forward deduction offers
the benefits of simplicity and locality by effectively avoiding
synchronization complexities across global contexts during
processing. The forward deduction also leverages the ex-
plicit information of match_cast. With forward deduction,
shape annotations of any new variables introduced during
compiler passes can be efficiently deduced locally.

In addition, driven by the goal of providing as much shape
information as possible, we also recognize the importance of
propagating interprocedural shape relations globally across

1003

Relax: Composable Abstractions for End-to-End Dynamic Machine Learning ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

def fused_add_relu(
 x: Tensor(("n * 2",), "f32"),
 y: Tensor(("n * 2",), "f32"),
 s: Shape(["n"])
) -> Tensor(("n * 2",), "f32"):
 lv0 = add(x, y)
 lv1 = relu(lv0)
 return lv1

def main(x: Tensor(("n", 2), "f32")):
 n = sym_var()
 lv0: Tensor(("2 * n",), "f32") = flatten(x)
 lv1: Tensor(("2 * n",), "f32") = fused_add_relu(lv0, lv0, shape(n))
 ...

Extra symbolic shape
parameter to pass in n

Parameter annotation can
be an expression

Call into fused
function

def main(x: Tensor(("n", 2), "f32")):
 n = sym_var()
 lv0: Tensor(("2 * n",), "f32") = flatten(x)

 lv1: Tensor(("2 * n",), "f32") = add(lv0, lv0)
 lv2: Tensor(("2 * n",), "f32") = relu(lv1)
 ...

Before fusion

After fusion

Regions to
fuse

Figure 8. Example function signature that contains symbolic
expressions caused by a result of operator fusion.

subgraph function calls to accommodate intermediate re-
sults of optimization passes like fusion, where the subgraph
functions themselves contain dynamic inputs and outputs.
Figure 7 exemplifies symbolic shape deduction for subgraph
function calls. Our system is able to take the symbolic rela-
tions at function subfn and propagate the shapes correctly
in the callers. We summarize the key design principles of
our shape annotation and deduction as follows:
Isolated symbolic relations at function boundaries. The
function signatures in Relax give parameter and return value
annotations, allowing for the annotation inference of func-
tion calls with only the function signature. This allows for
functions to be used as first-class values with the Callable
annotation. For example, we can deduce the return shapes
of subfn calls in Figure 7 by only looking at its signature.
The function signature also serves as source to generate
runtime checks, namely to ensure that passed arguments
and return value match the annotations in signature. These
shape checks are lightweight and do not impact the overall
performance.
Forward symbolic deduction. Relax performs forward
shape deduction based on the symbolic shape relations. As
a safety net, coarse-grained annotations are returned when
more specific information cannot be inferred (such as for
data-dependent operators), as it allows the symbolic deduc-
tion to succeed for common cases but also supports general
cases. Note that it is permitted to pass values with coarse-
grained annotations (e.g., Shape(ndim=2)) to functions that
contain more specific annotations like Shape((n,m)), since
we have lightweight runtime checks at the function bound-
ary ensure the shape matches. We choose forward deduction
by default to maintain the efficiency of the symbolic shape
deductions across passes (a full-graph forward deduction
takes time linear to the number of operations), and mean-
while still support the introduction of more powerful but less
efficient deduction methods via compiler passes as needed.

Algorithm 1 Analysis feedback pass for tensor program
pattern kind in Relax
1: Input: Tensor program function f.
2: Output: The pattern kind kind of tensor program f.
3: Collect the tensor read indices r_indices and write indices w_indices in f.

For example, for C[i,j] = A[i,j] + B[j], r_indices is ([i,j],[j]) and
w_indices is ([i,j],).

4: if not all write indices in w_indices are the same then
5: return Opaque
6: end if
7: kind← Opaque
8: has_elem_wise← False
9: for all read indices r_idx in r_indices and the only write indices w_idx do
10: if IsElementWise(r_idx,w_idx) then
11: kind← ElementWise (e.g., read A[i,j] and write C[i,j])
12: has_elem_wise← True
13: else if IsBroadcast(r_idx,w_idx) then
14: kind← Broadcast (e.g., read B[j] and write C[i,j])
15: else if IsInjective(r_idx,w_idx) then
16: kind← Injective (e.g., read A[j,i] and write C[i,j])
17: end if
18: end for
19: if kind==Broadcast and has_elem_wise==True then
20: kind← ElementWise (to handle cases C[i,j]=A[i,j]+B[j])
21: else if kind==Opaque and IsFuseMultiplyAdd(f) then
22: kind← OutputEwiseFusible (to handle matmul, convolution, etc.)
23: else if kind==Opaque and HasReductionLoop(f) then
24: kind← Reduction (to handle general reductions such as sum and max)
25: end if
26: return kind

Support symbolic expressions in parameter annota-
tions. Besides symbolic variables, we support general arith-
metic expressions in function parameter annotations, which
is an important capability to simplify operator fusion and
other transformations across subgraph functions in dynamic
shape settings. Figure 8 provides an example of such a case.
This example intends to fuse two intermediate operators,
add and relu. However, both intermediate values contain
an expression 2 × 𝑛. A naïve approach would create a new
function with parameters x and y that have shape (2𝑛,), but
𝑛 is nowhere supplied. To address this problem, the operator
fusion pass passes an extra parameter 𝑠 which is bound to
the runtime value of 𝑛. Passing extra symbolic arguments is
a common pattern we use when designing passes that lift
out function regions and recombine.

These three principles strike a balance between the need
for symbolic information and the deduction complexity. They
make global symbolic shape tracking feasible for common
machine learning use cases and create opportunities for dy-
namic shape–aware optimizations.

4.2 Cross-Level Dynamic Shape–Aware Operator
Fusion

Operator fusion helps to bring multiple operators together
and reduce the overall memory loading cost of operators.
Figure 9 shows the general flow of operator fusion in Relax.
A Relax program can contain tensor programs for both stan-
dard (e.g., matmul) and customized operators that may not
have corresponding graph-level operators, such as quantiza-
tion decode written in loops. We first get an analysis feedback
pass to annotate the pattern kind of each tensor program by

1004

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Ruihang Lai et al.

def main(
 x: Tensor(("n", 128), "f16")
 Wdata: Tensor((128, 32), "u32"),
 Wscale: Tensor((128, 8), "f16"),
):
 n = sym_var()
 with dataflow():
 lv0: Tensor((n,256),"f16") = call_tir(
 fused_decode_q4_mm,
 [x, Wdata, Wscale],
 Tensor((n, 256), "f16")
)
 return lv0

@tensorir_function
def fused_decode_q4_mm(
 X: Buffer(("n", 128), "f16"),
 Wdata: Buffer((128, 32), "u32"),
 Wscale: Buffer((128, 8), "f16"),
 Y: Buffer(("n", 256), "f16"),
):
 n = sym_var()
 W = alloc_buffer((128, 256), "f16")
 # decode_q4
 for k, j in grid(128, 256):
 W[k, j] = (
 (data[k, j//8] >> (k%8*4)) & 15 - 7
) * scale[i, k // 32]
 # matmul
 for i, j, k in grid(n, 256, 128):
 if k == 0:
 Y[i, j] = 0.0
 Y[i, j] += X[i, k] * W[k, j]

Follow-up scheduling
of TensorIR

def main(x: Tensor(("n", 128), "f16")
 Wdata: Tensor((128, 32), "u32"),
 Wscale: Tensor((128, 8), "f16")):
 n = sym_var()
 with dataflow():
 W: Tensor((128, 256), "f16") = call_tir(
 decode_q4,
 [Wdata, Wscale],
 Tensor((128, 256), "f16")
)
 lv0: Tensor((n, 256), "f16") = call_tir(
 mm, [x, W], Tensor((n, 256), "f16")
)
 return lv0

@tensorir_function
def decode_q4(
 Wdata: Buffer((128, 32), "u32"),
 Wscale: Buffer((128, 8), "f16"),
 W: Buffer((128, 128), "f16"),
):
 for k, j in grid(128, 256):
 W[k, j] = (
 (data[k, j//8] >> (k%8*4)) & 15 - 7
) * scale[i, k // 32]

@tensorir_function
def mm(X: Buffer(("n", 128), "f16"),
 W: Buffer((128, 256), "f16"),
 Y: Buffer(("n", 256), "f16")):
 n = sym_var()
 for i, j, k in grid(n, 256, 128):
 if k == 0:
 Y[i, j] = 0.0
 Y[i, j] += X[i, k] * W[k, j]

+ FuseTensorIRInitial Program
Compute pattern analysis

+ FuseOps

def main(x: Tensor(("n", 128), "f16")
 Wdata: Tensor((128, 32), "u32"),
 Wscale: Tensor((128, 8), "f16")):
 n = sym_var()
 with dataflow():
 lv0: Tensor((n,256),"f16") = fused_decode_q4_mm(
 x, Wdata, Wscale
)
 return lv0

def fused_decode_q4_mm(x:Tensor(("n",128),"f16")
 Wdata:Tensor((128,32),"u32"),
 Wscale:Tensor((128,8),"f16")):
 n = sym_var()
 with dataflow():
 W: Tensor((128, 256), "f16") = call_tir(
 decode_q4,[Wdata,Wscale],Tensor((128,256),"f16")
)
 lv0: Tensor((n, 256), "f16") = call_tir(
 mm, [x, W], Tensor((n, 256),"f16")
)
 return lv0

@tensorir_function
def decode_q4(Wdata: Buffer((128, 32), "u32"),
 Wscale: Buffer((128, 8), "f16"),
 W: Buffer((128, 128), "f16")):
 func_attr("compute_pattern", "Injective")
 ...
@tensorir_function
def mm(X: Buffer(("n", 128), "f16"),
 W: Buffer((128, 256), "f16"),
 Y: Buffer(("n", 256), "f16")):
 func_attr("compute_pattern", "OutputEwiseFusible")
 ...

Figure 9. Dynamic shape–aware operator fusion case study with customized quantization decode (decode_q4). Compute
pattern analysis classifies each tensor program to a pattern kind (blue). Pattern-match-based FuseOps makes use of these
pattern kinds to construct new subgraph functions and generate subgraph function calls (green). FuseTensorIR merges tensor
programs and replaces subgraph function calls by call_tir (yellow). Notably, cross-level abstractions in Relax allows fusion
for customized tensor programs that cannot be easily represented on graph level without introducing specialized operators,
which is essential for browser and mobile deployment.

Algorithm 2 FuseOps in Relax
1: Input: IR module mod and fusion patterns patterns.
2: Output: The updated IR module after FuseOps.
3: mod_updated← mod.Copy()
4: for all graph-level function g in mod do
5: for all fusion pattern pattern in patterns do
6: matches← CrossLevelPatternMatch(g, mod, pattern)
7: for all match in matches do
8: subgraph_fn← NewFuncWithSymShapePreserved(match)
9: mod_updated.AddFunc(subgraph_fn)
10: Replace match in g with a new subgraph function call to subgraph_fn.
11: end for
12: end for
13: end for
14: return mod_updated

pattern matching on tensor programs (Algorithm 1 shows
the simplified pseudocode). The candidate pattern kinds
include ElementWise, Broadcast, Injective, Reduction,
OutputEwiseFusible, or Opaque (as the fallback). These
pattern kinds describe the mathematical properties of tensor
programs, and such information is then used by the FuseOps
pass (Algorithm 2) to group tensor program calls into sub-
graph functions via pattern-match-based graph partitioning
(an example pattern is the fusion of ElementWise tensor pro-
grams into the back of OutputEwiseFusible ones, such as

matmul+ReLU). Finally, we apply FuseTensorIR, a cross-level
transformation that jointly updates tensor programs and the
graph-level calling site by merging tensor programs called
in each subgraph function into a single one. Unlike applying
naïve static-shape fusion, we need to make sure that all steps
above handle symbolic shapes by tracking the symbolic vari-
ables and generate extra symbolic variable parameters to
support symbolic expressions in parameter annotations (sim-
ilar to Figure 8), as we discussed in §4.1. Notably, the analysis
feedback significantly reduces manual effort, as we can auto-
mate the tensor program pattern analysis with a lightweight
pass, whereas traditional single-shot abstractions require
heavy and inflexible manual operator annotations.
The three fusion sub-steps bring great opportunities for

further composition and customization. For example, we
can apply a pass to fuse new sets of patterns that are not
covered by FuseOps (e.g., fusing all sub-operators in scaled
dot-product attention [44]), and use FuseOps for the remain-
der. FuseTensorIR can then transform the fused subgraph
function from both customized and standard fusion. This
approach allows quick composition of different fusion, im-
proving the overall productivity of continuous compiler de-
velopment.

1005

Relax: Composable Abstractions for End-to-End Dynamic Machine Learning ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

x
(2, n),"f32"

lv0 = exp(x)
lv1 =

transpose(lv0)
lv2 =

relu(lv1)
lv3 =

transpose(lv2)

Allocate
(2,n) for lv0

Allocate
(n,2) for lv1

Allocate
(n,2) for lv2

Allocate
(2,n) for lv3

Before memory planning:

After memory planning:

x
(2, n),"f32"

lv0 = exp(x)
lv1 =

transpose(lv0)
lv2 =

relu(lv1)
lv3 =

transpose(lv2)

Allocate 2*n*4
bytes for s0

Allocate 2*n*4
bytes for s1

Instantiate
lv0:(2,n)

from s0

Instantiate
lv2:(n,2)

from s0
lv1:(n,2)

from s1
lv3:(2,n)

from s1

Figure 10. Dynamic shape–aware memory planning exam-
ple. Before planning, all four intermediate tensors are indi-
vidually allocated. After memory planning, the intermediate
tensors reuse two allocated storage chunks.

Algorithm 3 Dynamic shape–aware memory planning
1: Input: Graph-level function g.
2: Output: The updated function after memory planning.
3: Lower call_tir and call_dps_library in g, expanding them to explicit memory

allocation and DPS calls.
4: liveness← LivenessAnalysis(g) (for the live range of each tensor)
5: storage_pool← a new storage pool with symbolic shape awareness
6: for all operation op in g in the sequential order do
7: if op is a tensor allocation of tensor t then
8: storage←

storage_pool.RequestReuseWithSymShape(op.shape,op.dtype)
9: if storage is null then
10: storage← storage_pool.NewStorage()
11: Insert the storage allocation in front of op in g.
12: end if
13: Insert tensor instantiation from storage to t in front of op in g.
14: else
15: for all tensor t which is used by op do
16: if liveness.TensorIsDeadAfterOp(t, op) then
17: storage_pool.RecycleStorageForTensor(t)
18: end if
19: end for
20: end if
21: end for
22: return g

4.3 Dynamic Shape–Aware Memory Planning
Memory is an essential resource in modern ML applications.
Most ML compilers can plan memory reuse by comparing
sizes of static-shape tensors and allocating a fixed set of
memory blocks ahead of time to reduce the runtime mem-
ory allocation. Normally, compilers cannot take the same
approach for compile-time unknown shapes and must rely
on runtime memory allocators. With symbolic shape ab-
stractions, however, we can analyze and compare dynamic
tensor shapes and plan for their reuse accordingly. Figure 10
and Algorithm 3 show how we apply memory planning
with dynamic shapes. We first lower the foreign function
calls call_tir and call_dps_library to explicit memory
allocation and DPS calls (as in Figure 5), so we can expose
these allocation for planning. To support dynamic shape,
the RequestReuseWithSymShape in Algorithm 3 leverages
symbolic expression analysis to prove whether two sym-
bolic expressions are equal, and then appropriately pick an

Before cross-level workspace lifting

Lift allocation
to graph level

def main(x: Tensor(("n", 2048), "f32"),
 w: Tensor((2048, 4096), "f32")):
 n = sym_var()
 lv0: Tensor((n, 4096), "f32") = call_tir(
 mm_split_k, [x, w], Tensor((n, 4096),"f32")
)
 return lv0

@tensorir_function
def mm_split_k(X: Buffer(("n", 2048) "f32"),
 W: Buffer((2048, 4096), "f32"),
 Y: Buffer(("n", 4096), "f32")):
 n = sym_var()
 workspace = alloc_buffer(8*1024*1024,"f32","global")
 for i, j, k0, k1 in grid(n, 4096, ..., ...):
 # Write partial accumulation of X*W into workspace
 for i, j, k0 in grid(n, 4096, ...):
 # Accumulate values in workspace and write to Y

After cross-level workspace lifting

def main(x: Tensor(("n", 2048), "f32"),
 w: Tensor((2048, 4096), "f32")):
 n = sym_var()
 workspace = alloc_tensor((8*1024*1024,), "f32")
 lv0: Tensor((n, 4096), "f32") = call_tir(
 mm_split_k, [x, w, workspace],
 Tensor((n, 4096),"f32")
)
 return lv0

@tensorir_function
def mm_split_k(X: Buffer(("n", 2048) "f32"),
 W: Buffer((2048, 4096), "f32"),
 workspace: Buffer((8*1024*1024,), "f32"),
 Y: Buffer(("n", 4096), "f32")):
 n = sym_var()
 for i, j, k0, k1 in grid(n, 4096, ..., ...):
 # Write partial accumulation of X*W into workspace
 for i, j, k0 in grid(n, 4096, ...):
 # Accumulate values in workspace and write to Y

Figure 11. Cross-level tensor program workspace lifting ex-
ample. The global memory allocation in the tensor program
(orange) is lifted to the graph level, being passed explicitly
via call_tir. The tensor program is updated accordingly
to take in this workspace as a parameter (green).

reusable storage from the pool. We can further take the up-
per bound of the symbolic values when they are known (e.g.,
annotated by users, such as the inherent context lengths
in LLMs) and statically allocate adequate memory, which
allows creating a static memory allocation plan ahead of
time, even in the presence of dynamic shapes. This upper
bound approach is related to Func::bound() in Halide [33]
whichmarks bounds in tensor programs, andwe bring it both
graph and tensor program levels. Such predictable memory
usage estimation is crucial for deploying dynamicMLmodels
on memory-limited backends. Additionally, static planning
can improve model performance by enabling CUDA Graph
offloading (§4.5), which relies on static memory allocation.

4.4 Cross-Level Tensor ProgramWorkspace Lifting
In addition to memory allocation at the graph level, some-
times a tensor program may also require global memory allo-
cation for intermediate workspace. For example, the Stream-
K [29] schedule of matmul decomposes a matrix multipli-
cation into two phases of reduction. The first phase writes

1006

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Ruihang Lai et al.

partial accumulation results into an intermediate global mem-
ory buffer, which is then consumed and accumulated by the
second phase. As shown in Figure 11, We can detect such
global memory allocation in tensor programs from analysis
feedback, and jointly rewrite the tensor program and the
graph-level caller site to lift the allocation to graph level.
Importantly, the lifted allocation can be planned by the mem-
ory planning in §4.3, which further increases the overall
memory reuse. This optimization is only possible with the
cross-level abstractions when the shape relation is preserved
throughout all cross-level transformations in Relax, and the
optimization opportunities for planning such memory reuse
may not arise in the traditional single-shot lowering flow.

4.5 CUDA Graph Offloading
CUDA Graph [21] is an optimization that reduces GPU ker-
nel launch overhead at the GPU driver level and thereby
improve the overall system performance. It works by captur-
ingmultiple GPU kernel launches and then replaying them as
a group, rather than launching individual kernels separately.
To replay captured kernel launches, the GPU driver requires
the all global memory accessed by the kernels to be constant-
sized and statically allocated ahead of capturing. This poses a
significant challenge for applying CUDA Graph to dynamic-
shape ML models. With static memory planning, Relax can
pre-allocate all memory statically, even for dynamic-shaped
tensors. We build a pass to analyze the computational graph
and lift subgraphs that meet CUDA Graph conditions into
subgraph function after memory planning. The pass inserts
runtime builtin functions that handle CUDA Graph capture
or replay for these offloaded subgraph functions. At runtime,
only the first run of a subgraph function triggers CUDA
Graph capture; subsequent runs automatically replay the
captured CUDA Graph. Through these, we extend CUDA
Graph, typically available only for static models, to a broad
range of dynamic workloads. We can generally apply the
principle of the graph offloading optimization to any GPU
backend that supports static execution graphs in the future.

4.6 Tensor Operator Optimizations via Partial
Lowering

Modern ML frameworks optimize tensor operators in two
approaches. We can offload computation to platform-specific
operator libraries, or leverage compiler tensor program opti-
mizations and code generation. Most existing ML compilers
make these decisions at the boundary between the graph
level and lower levels, making it hard to compose different
lowering approaches. For instance, if we want to introduce
a new operator library, we need to carefully examine the
existing lowering strategies and update accordingly. The
complexity of the lowering layer grows as we incorporate
more approaches, such as different ways of auto-scheduling.
Relax applies tensor operator optimizations via partial

lowering (Figure 12). We register a set of “(subgraph pattern,

def main(x: Tensor(("n", 128), "f32"), w: Tensor((128, 256), "f32")):

 n = sym_var()
 with dataflow():
 lv0: Tensor((n, 256), "f32") = call_tir(
 mm, [x, w], Tensor((n, 256),"f32")
)
 lv1: Tensor((n, 256), "f32") = rms_norm(lv0)

 lv1: Tensor((n, 256), "f32") = call_dps_library(
 "cutlass.rms_norm", [lv0], Tensor((n, 256), "f32")
)
 ...

@tensorir_function
def mm(X: Buffer(("n", 128) "f32"),
 W: Buffer((128, 256), "f32"),
 Y: Buffer(("n", 256), "f32")):
 n = sym_var()
 for i, j, k in grid(n, 256, 128):
 with block():
 with init():
 Y[i, j] = 0
 Y[i, j] += X[i, k] * W[k, j]

I. Replacement from composable
partial lowering passes

TensorIR function body

Program analysis and
transformations

Optimized function body

II. Loop-level TensorIR optimization

update

Figure 12. Tensor operator optimization examples.

Partial Library Lowering (§4.5)

Operator to Tensor Program Lowering (§4.6)

Dynamic Shape–Aware Operator Fusion (§4.1)

Tensor Program Optimizations (§4.5)
Tensor Program Workspace Lift (§4.3)

Dynamic Shape–Aware Memory Planning (§4.2)
CUDA Graph Offloading (§4.4)

Build to Runnable Module (§4.6)

Cross-level optims

Graph-level optims

Tensor program optims

Lowering passes

Figure 13. Cross-level optimization and lowering pipeline.

library function)” pairs in Relax, and build pattern-match-
and-rewrite passes that detect specific patterns (e.g., matmul
with epilogue) in the graph level, and partially lower detected
regions to foreign library calls. Relax also allows users to
register patterns for customizability. Additionally, based on
TensorIR [16] scheduling transformations, we build a set of
analysis-based dynamic shape–aware schedule rules to opti-
mize tensor programs by minimizing memory loading. We
can also include passes to apply Ansor-style [8, 39, 49] auto-
tuning for rare tensor programs (e.g., complicated convolu-
tions) that our analysis-based schedule rules fail to handle.
Importantly, all these transformations can be composed to-
gether and work collectively. Relax enables fast development
and only requires a single relatively simple partial lowering
pass to customize the optimizations of operators.

4.7 Optimization and Lowering Pipeline
Relax uses a fixed-order pipeline (without fixed point) on the
cross-level abstraction to optimize, lower and finally build
an end-to-end model into a runnable module. An example
pipeline is shown in Figure 13. We prioritize the partial li-
brary lowering (§4.6) to leverage external library functions
on the target platform. Next, we go through the whole pro-
gram, generate tensor programs for all high-level operator

1007

Relax: Composable Abstractions for End-to-End Dynamic Machine Learning ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

1 16 32 64
Batch Size

10

15

20

25

De
co

de
 To

ke
n

La
te

nc
y

(m
s/

to
k) Llama3-8B

1 16 32 64
Batch Size

15

20

25

30

35
Gemma1.1-7B

1 16 32 64
Batch Size

10

15

20

25

Qwen2-7B
HF Transformers HF w/ torch.compile vLLM llama.cpp Relax (Ours)

Figure 14. Inference performance of various models on NVIDIA RTX 4090 under different batch sizes. We omitted the results
of HF with torch.compile for Qwen2-7B due to the lack of support. Relax brings competitive performance across different
models and batch sizes, and reduces the decode token latency by up to 27%.

calls, and lower the operator calls to call_tir of correspond-
ing tensor programs. We can then apply operator fusion,
tensor program workspace lifting, memory planning, and
CUDA Graph offloading. Notably, some tensor program op-
timizations (e.g., workspace lifting) are applied before graph
optimizations, which necessitates Relax’s cross-level abstrac-
tion design.
At the end of the pipeline is building the model into a

runnable module. At the graph level, a fundamental task is
to associate symbolic variables with concrete shape values
and compute symbolic expressions at runtime. We create an
integer host tensor to store runtime values of all symbolic ex-
pressions in the program. At the start of transformation, we
populate the values of symbolic variables in program input
tensors. We then generate tensor programs that load from
the tensor, evaluate symbolic expressions, and store results
to corresponding locations. Finally, we insert function calls
to construct shape tuples when tensor shapes are needed as
first-class values. After this transformation, we erase all an-
notations, leaving a program comprised mainly of low-level
function calls. The calls will then be translated to a sequence
of virtual machine instructions, each of which is a call into a
generated or builtin function. For optimized low-level tensor
programs, we directly generate corresponding GPU code. We
package the graph-level virtual machine instructions and the
GPU code together into a single holistic end-to-end module,
which can then run on the target platform of compilation.

5 Evaluation
We implement Relax on top of Apache TVM [7]. Notably,
the insights presented in this paper can also benefit other
ML compilation frameworks as well. This section provides
evaluation to answer the following questions:
• Does Relax provide competitive LLM inference perfor-
mance compared with existing frameworks? (§5.1)?
• What are the effects of proposed abstractions and opti-
mizations on performance and memory usage (§5.2)?
• Can Relax support these emerging LLMs on a broad set of
emerging platforms (§5.3)?
• How does Relax perform on a broader model set? (§5.4)?

5.1 Large Language Model Inference Evaluation
This section evaluates the performance of Relax with end-to-
end LLMs, a typical class of emergingMLmodels, on NVIDIA
GPUs and emerging AMD and Apple GPUs. We assess the
per-token latency of the LLM generation decode phase across
different batch sizes, so that dynamism of both sequence
length and batch size is included. Our evaluation is conducted
on Llama3-8B, Gemma1.1-7B and Qwen2-7B with float16
weight and activationswith NVIDIA RTX 4090, AMDRadeon
7900 XTX and Apple M2 Ultra. We compare with baseline
frameworks HuggingFace Transformers (v4.41.2) [45] with
PyTorch (v2.3.1) eager [30] and compile mode [2], vLLM [26]
(v0.5.0.post1), and hand-optimized LLM inference system
llama.cpp (172c825) [20]. FlashAttention [13] is enabled
for baselines when available. We construct Relax IR with a
PyTorch-like nn.Module interface. We measure the decode
time of generating 32 tokens and compute the per-token
latency per sequence. Importantly, Relax compiles models
only once for arbitrary batch sizes and sequence lengths.

Figure 14 to 16 show that Relax brings consistently compet-
itive performance across platforms. In these cases, symbolic
shape analyses enable Relax to generate tensor programs
that are only dynamic for the batch size and sequence length
dimensions. Cross-level abstractions allow seamless composi-
tion of graph and tensor program optimizations for any GPU
backend, eliminating the needs to manually write kernels for
each individual backend. More importantly, cross-level ab-
stractions enable us to use compiler-optimized matrix-vector
multiplication tensor programs at batch size 1, while being
able to apply partial library lowering to leverage operator
libraries for other batch sizes. This flexibility greatly helps
improve the performance of special cases.
Notably, while the HuggingFace Transformers with Py-

Torch compile mode supports dynamic sequence lengths, it
still requires static KV cache, which depends on significant
model definition changes and is therefore available only for
a fewmodels.3 Additionally, not every baseline well supports
all the platforms. The hand-optimized llama.cpp has strong
performance on Apple GPUs but performs less effectively on

3https://huggingface.co/docs/transformers/main/en/llm_optims

1008

https://huggingface.co/docs/transformers/main/en/llm_optims

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Ruihang Lai et al.

1 16 32 64
Batch Size

20

30

40

50

De
co

de
 To

ke
n

La
te

nc
y

(m
s/

to
k) Llama3-8B

1 16 32 64
Batch Size

20

40

60

80

100
Gemma1.1-7B

1 16 32 64
Batch Size

20

30

40

50
Qwen2-7B

HF Transformers HF w/ torch.compile vLLM llama.cpp Relax (Ours)

Figure 15. Inference performance of various models on AMD Radeon 7900 XTX under different batch sizes. Relax consistently
delivers competitive performance, and brings optimized performance with up to 1.50x under case of batch size 1.

1 16 32 64
Batch Size

50

100

150

200

De
co

de
 To

ke
n

La
te

nc
y

(m
s/

to
k) Llama3-8B

1 16 32 64
Batch Size

50

100

150

Gemma1.1-7B

1 16 32 64
Batch Size

50

100

150

Qwen2-7B
HF Transformers llama.cpp Relax (Ours)

Figure 16. Inference performance of various models on Apple M2 Ultra under different batch sizes. Relax has competitive
performance comparing to the hand-optimized llama.cpp baseline.

1 16 32 64
Batch Size

16

18

20

22

De
co

de
 To

ke
n

La
te

nc
y

(m
s/

to
k) Llama3-8B

Relax without fusion, partial lib lowering, CUDA graph offloading
+ operator fusion
+ paritial library lowering
+ CUDA graph offloading

Figure 17. Effects of operator fusion, partial library dispatch-
ing and CUDA Graph offloading on Llama3-8B inference
across different batch sizes.

NVIDIA GPUs. And PyTorch compile mode and vLLM lack
Apple GPU support. In contrast, Relax is able to support all
the platforms with competitive performance.

5.2 Effects of Composable Optimizations
Effects on performance. Relax’s abstraction allows for
flexible combination of optimizations such as CUDA Graph
offloading, operator fusion, partial library lowering and code
generation. We evaluate these optimizations with float16
Llama3-8B with on NVIDIA RTX 4090. Figure 17 shows the
ablation study results. Partial library lowering contributes
the most, up to 27% of the performance for large batch sizes,
where it lowers heavy-load matrix multiplications (which

Table 2. Memory usage of Llama3-8B inference with and
without static memory planning, through workloads of suc-
cessive prefill of different sequence lengths and successive
decode of different batch sizes.

Llama3-8B Prefill MiB

Relax w/o planning 192.7
Relax w/. planning 149.7

Llama3-8B Decode MiB

Relax w/o planning 150.0
Relax w/. planning 88.2

count for about 1/3 of all operators) to cuBLAS library ker-
nels. Operator fusion helps by fusing about 1/5 of all op-
erators (such as RMSNorm and element-wise addition) to
reduce launched kernels and GPU global memory accesses.
CUDA Graph offloading overall brings about 1-2% of per-
formance gain by reducing kernel launch overheads at GPU
driver level. All these composable optimizations collectively
improve the overall system performance.
Effects onmemory usage.We study the memory reduction
of static memory planning by measuring the total allocated
activationmemory size during the float16 Llama3-8B prefill
of successive inputs of length 128, 256, 512, 1024, and during
the decode of successive batches of size 1, 16, 32 and 64. The
memory planning plans with the upper bound of sequence
length and batch size.Whenmemory planning is disabled, we
use a runtime memory pool to recycle unused memory. As in
Table 2, static memory planning reduces activation memory
by 22% during successive prefill phases and by 40% for decode.
With static memory planning, we always reuse memory
across all input lengths and batch sizes, even as they vary
over time. In contrast, without memory planning, the system

1009

Relax: Composable Abstractions for End-to-End Dynamic Machine Learning ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

Table 3. Inference performance (throughput, tokens/sec) of 4-bit
quantized Llama3-8B, Phi3-mini-4k and RedPajama-3B
models on a broad set of emerging platforms, including
mobile and embedded devices. Relax deploys emerging
models across these platforms, which most existing ML
frameworks do not well support.

Devices Backend Llama Phi3 RedPajama

iPhone 14 Pro Metal 5.1† 13.8 19.5

Samsung S23 OpenCL 7.9† 13.1 20.5

Orange Pi 5 OpenCL 2.3 5.0 6.1

Steam Deck Vulkan 14.0 20.2 22.9

Jetson Orin CUDA 32.0 59.1 65.2

WebGPU
(M3 Max) WebGPU 37.8 68.0 68.6

† We run 3-bit quantized Llama2-7B on iPhone and 4-bit quantized
Llama2-7B on Samsung S23 to fit the VRAM limit of the mobile
environments.

Llama2-7B Phi3-mini-4k RedPajama-3B
0

5

10

15

20

Th
ro

ug
hp

ut
 (t

ok
/s

)

llama.cpp Relax (Ours)

Figure 18. Single-sequence generation performance compar-
ison of 4-bit quantized LLMs on Samsung S24. Relax delivers
up to 55% more throughput on evaluated models.

repeatedly allocates dynamic-sized memory whenever the
input shape changes, which is unpredictable in real-world
applications. This potentially leads to even higher memory
usage unless all memory is statically planned. Additionally,
by allocating all memory in advance, we enable CUDAGraph
for emerging models and yield further performance gains.
Importantly, all these optimizations rely on proposed ab-

stractions. For example, in the best case without shape infor-
mation, we can no longer run static analyses such as static
memory planning and static graph capture for optimizations,
which may cause additional memory and latency overhead.

5.3 Evaluation on More Emerging Platforms
This section evaluates the deployment of emerging models
onto a broader set of emerging platforms that are less sup-
ported by existing solutions. We evaluate single-sequence
LLM inference performance on iPhone 14 Pro with Apple
A16, Samsung S23 with Qualcomm Snapdragon 8 Gen 2,
Orange Pi 5 with ARM Mali GPU, Steam Deck with AMD
APU, NVIDIA Jetson Orin developer kit, and in-browser We-
bGPU [12] on Apple M3 Max laptop. We run 4-bit quantized

500

600

700

Ti
m

e
(m

s)

NVIDIA RTX 4090

2000

4000

Apple M2 Ultra

HF Transformers
WhisperX

Faster Whisper
whisper.cpp

Relax (Ours)

Figure 19. Transcription time of a 30-second speech file with
Whisper-large-v3 on NVIDIA RTX 4090 and Apple M2 Ultra.
WhisperX and Faster Whisper have no Apple GPU support.
Relax delivers competitive performance on both NVIDIA
and Apple platforms.

500

600

700

Ti
m

e
(m

s)

NVIDIA RTX 4090

1000

2000

Apple M2 Ultra

HF Transformers
vLLM

llama.cpp
Relax (Ours)

Figure 20. LLaVA generation time of 32-token for an im-
age input on NVIDIA RTX 4090 and Apple M2 Ultra. Relax
achieves competitive optimized performance for LLaVA gen-
eration on both platforms.

Llama3-8B for most cases, while using Llama2-7B for mobile
phones so the total memory usage fits the VRAM limit.
As in Table 3, Relax provides a throughput of over 5 to-

kens/s for mobile devices, and 2.3 tokens/s for Orange Pi 5. In
addition to physical devices, Relax enables LLM deployment
on the emerging WebGPU backend, supporting web-native
machine learning. To our best knowledge, Relax is the first
solution to enable GPU-accelerated LLM inference on these
platforms except the NVIDIA Jetson Orin. Without memory
planning that pre-allocates all needed memory and keeps it
within the budget, these models are not even runnable on
some of the environments due to memory constraints.

We further compare Relax on Samsung S23 with llama.cpp.
Relax achieves up to 55% better throughput (Figure 18). No-
tably, llama.cpp only utilizes CPU due to lack of kernels for
Android GPUs, whereas Relax automatically generates opti-
mized GPU codes via compilation, enabling emerging model
deployment not only specifically on Android platforms, but
also generically on more emerging platforms.

5.4 Evaluation on Additional Set of Models
We also study Relax on an additional set of models. Whis-
per [32] is an automatic speech recognition (ASR) model
implemented as an encoder-decoder Transformer. We evalu-
ate the time to transcribe a 30-second speech with Whisper-
large-v3, and compare Relax with HuggingFace Transform-
ers, WhisperX [4] (f2da2f8), Faster Whisper (v1.0.2) and

1010

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Ruihang Lai et al.

whisper.cpp [19] (5d950c4). As shown in Figure 19, Relax
brings a speedup of 14% on NVIDIA 4090 and has competi-
tive performance on Apple GPU. LLaVA [28] is a large multi-
modal model that integrates the pre-trained CLIP [31] visual
encoder and the LLM Vicuna [10] for general-purpose vi-
sual and language understanding. We evaluate the time of
generating 32 tokens for an image using baselines of Hug-
gingFace Transformers, vLLM, and llama.cpp. Results are
shown in Figure 20. Relax efficiently supports the vision
encoder together with the prefill and decode phases of LLM.

6 Related Work
Vendor-optimized libraries like cuDNN [9], CUTLASS [41],
MKL-DNN [23], and MIOpen [25] are frequently used by ML
frameworks [1, 30] to support tensor operators on various
hardware backends. The libraries are platform-specific and
have large engineering development costs to cover the grow-
ing demands of operators, data formats, and layouts. Relax
complements such libraries by allowing them to be used
alongside loop-level code optimized with dynamic shape–
awareness. Frameworks that rely on libraries can potentially
use Relax to choose between libraries or generated code.

The emerging demand for large language models has also
inspired a set of frameworks [18, 20, 26, 45] optimized for
these particular workloads. These frameworks usually rely
on manual optimizations for each specific backend. They can
leverage Relax to reduce the effort for supporting a broader
set of workloads and emerging backends.

There has also been much work on abstractions for trans-
forming and optimizing loop-level code for tensor operators.
Triton [42] and Graphene [22] are abstractions that optimize
tensorized programs on GPU. DietCode [48], CoRA [15], and
SparseTIR [47], focus on tensor program optimizations with
shape dynamism and irregularity. Mosaic [5] is a sparse com-
piler combining library dispatch and sparse tensor program
optimizations. Cortex [14] enables tensor program optimiza-
tions for recursive computation. We use TensorIR [16] as
the tensor program abstraction in our cross-level design im-
plementation, but we could combine our approaches with
other abstractions for tensor supports programs to enable a
broader spectrum of tensor program optimizations.

ML compilers are designed to represent and optimize end-
to-end model computations. High-level computations are
usually represented as computation graph–style dialects.
TVM [7]’s Relay [35] and MLIR dialects [27] represent dy-
namic dimensions as unknown and do not track dynamic
shape relations. IREE [24] provides end-to-end compilation
with MLIR. Nimble [40] leverages runtime bucketing to sup-
port dynamic operators. DISC [50, 51] enables shape as a
first-class value but does not track symbolic shapes. TorchIn-
ductor [2] brings native symbolic shape support to the Py-
Torch compiler, focusing on kernel generation for TorchFX
graphs [34] derived from TorchDynamo [2]. The PyTorch

compiler stores a global symbolic variable table for traced
subgraphs, and is synergistic with its JIT-focused design
and avoids cross-function symbolic shape tracking. Relax
complements the PyTorch compiler by abstracting and glob-
ally tracks cross-function symbolic shape for full programs,
enabling AOT compilation and holistic deployment onto
emerging platforms. As a result, Relax can be used as a back-
end for frameworks like PyTorch, JAX [17] to deploy models
to more emerging backends. Axon [11] is a functional lan-
guage that considers shape deduction in its types and applies
a constraint solver to determine shape relations; unlike Relax,
it does not describe a dynamic fallback when shapes cannot
be deduced statically. (Note that Relax could still apply a
similar constraint-solving approach, despite its additional
compile time costs.) Halide [33] supports external function
calls via Func::define_extern() in tensor programs. Relax
extends this mechanism to both graph and tensor program
levels, bridging together external libraries and these levels.
Additionally, most existingML compilers follow amulti-level
single-shot lowering approach, whereas Relax enables global
symbolic shape tracking across functions via cross-level ab-
stractions. Relax’s insights for supporting dynamic shapes
and cross-level optimizations can be used to improve these
ML compiler frameworks.

7 Conclusion
We introduce Relax, an abstraction for end-to-end dynamic
machine learning on emerging platforms. Our cross-level
abstractions and first-class symbolic shapes enable compos-
able optimizations of dynamic shape models and allow us to
build an AOT end-to-end holistic framework that deploys
emerging models to diverse emerging backends. Relax de-
livers performance competitive to state-of-the-art systems
across platforms, including 27% of LLM decode token la-
tency reduction on NVIDIA GPUs. We hope this work will
encourage additional studies of dynamic shape–aware pro-
gram abstractions and highlight new possibilities for ML
compilers.

Acknowledgments
We thank all anonymous ASPLOS reviewers and our shep-
herd Fredrik Kjolstad for their constructive feedback and
comments. This work was supported in part by gifts from
OctoAI, Qualcomm, and CMU open-source software fellow-
ships.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: a system for large-scale machine
learning. In 12th USENIX symposium on operating systems design and
implementation (OSDI 16), pages 265–283, 2016.

[2] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh
Jain, Michael Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni

1011

Relax: Composable Abstractions for End-to-End Dynamic Machine Learning ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

Burovski, Geeta Chauhan, Anjali Chourdia, Will Constable, Alban Des-
maison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael
Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Lau-
rent Kirsch, Michael Lazos, Mario Lezcano, Yanbo Liang, Jason Liang,
Yinghai Lu, C. K. Luk, Bert Maher, Yunjie Pan, Christian Puhrsch,
Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk,
Shunting Zhang, Michael Suo, Phil Tillet, Xu Zhao, EikanWang, Keren
Zhou, Richard Zou, Xiaodong Wang, Ajit Mathews, WilliamWen, Gre-
gory Chanan, Peng Wu, and Soumith Chintala. Pytorch 2: Faster
machine learning through dynamic python bytecode transformation
and graph compilation. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, ASPLOS ’24, page 929–947, New York,
NY, USA, 2024. Association for Computing Machinery.

[3] Junjie Bai, Fang Lu, Ke Zhang, et al. Onnx: Open neural network
exchange. https://github.com/onnx/onnx, 2019.

[4] Max Bain, Jaesung Huh, Tengda Han, and Andrew Zisserman. Whis-
perx: Time-accurate speech transcription of long-form audio, 2023.

[5] Manya Bansal, Olivia Hsu, Kunle Olukotun, and Fredrik Kjolstad.
Mosaic: An interoperable compiler for tensor algebra. Proceedings of
the ACM on Programming Languages, 7(PLDI):394–419, 2023.

[6] Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao,
Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason
Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria
Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. Gpt-neox-
20b: An open-source autoregressive language model, 2022.

[7] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, et al. Tvm: An automated end-to-end optimizing compiler for
deep learning. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 578–594, 2018.

[8] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, ThierryMoreau,
Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Learning to
optimize tensor programs, 2019.

[9] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-
hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient
primitives for deep learning, 2014.

[10] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao
Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E.
Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality, March 2023.

[11] Alexander Collins and Vinod Grover. Axon: A language for dynamic
shapes in deep learning graphs, 2022.

[12] Abdul Dakkak, Carl Pearson, and Wen-mei Hwu. Webgpu: A scal-
able online development platform for gpu programming courses. In
2016 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pages 942–949. IEEE, 2016.

[13] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré.
Flashattention: Fast and memory-efficient exact attention with io-
awareness. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh, editors, Advances in Neural Information Processing Systems,
volume 35, pages 16344–16359. Curran Associates, Inc., 2022.

[14] Pratik Fegade, Tianqi Chen, Phillip Gibbons, and Todd Mowry. Cortex:
A compiler for recursive deep learning models. Proceedings of Machine
Learning and Systems, 3:38–54, 2021.

[15] Pratik Fegade, Tianqi Chen, Phillip Gibbons, and Todd Mowry. The
cora tensor compiler: Compilation for ragged tensors with minimal
padding. In D. Marculescu, Y. Chi, and C. Wu, editors, Proceedings of
Machine Learning and Systems, volume 4, pages 721–747, 2022.

[16] Siyuan Feng, Bohan Hou, Hongyi Jin, Wuwei Lin, Junru Shao, Ruihang
Lai, Zihao Ye, Lianmin Zheng, Cody Hao Yu, Yong Yu, et al. Tensorir:
An abstraction for automatic tensorized program optimization. In
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2,

pages 804–817, 2023.
[17] Roy Frostig, Matthew Johnson, and Chris Leary. Compiling machine

learning programs via high-level tracing. 2018.
[18] Georgi Gerganov. ggml. https://github.com/ggerganov/ggml, 2022.
[19] Georgi Gerganov. whisper.cpp. https://github.com/ggerganov/whisper.

cpp, 2022.
[20] Georgi Gerganov. llama.cpp. https://github.com/ggerganov/llama.cpp,

2023.
[21] Alan Gray. Getting started with cuda graphs, Sep 2019.
[22] Bastian Hagedorn, Bin Fan, Hanfeng Chen, Cris Cecka, Michael Gar-

land, and Vinod Grover. Graphene: An ir for optimized tensor computa-
tions on gpus. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 3, pages 302–313, 2023.

[23] Intel. Intel® math kernel library for deep learning networks, 2017.
[24] IREE Project. IREE, sep 2019.
[25] Jehandad Khan, Paul Fultz, Artem Tamazov, Daniel Lowell, Chao Liu,

Michael Melesse, Murali Nandhimandalam, Kamil Nasyrov, Ilya Permi-
nov, Tejash Shah, Vasilii Filippov, Jing Zhang, Jing Zhou, Bragadeesh
Natarajan, and Mayank Daga. Miopen: An open source library for
deep learning primitives, 2019.

[26] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph E Gonzalez, Hao Zhang, and Ion Stoica.
Efficient memory management for large language model serving with
pagedattention. arXiv preprint arXiv:2309.06180, 2023.

[27] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasi-
lache, and Oleksandr Zinenko. Mlir: Scaling compiler infrastructure
for domain specific computation. In 2021 IEEE/ACM International Sym-
posium on Code Generation and Optimization (CGO), pages 2–14. IEEE,
2021.

[28] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual
instruction tuning. In NeurIPS, 2023.

[29] Muhammad Osama, Duane Merrill, Cris Cecka, Michael Garland, and
John D. Owens. Stream-k: Work-centric parallel decomposition for
dense matrix-matrix multiplication on the gpu, 2023.

[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information processing sys-
tems, 32, 2019.

[31] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel
Goh, Sandhini Agarwal, Girish Sastry, AmandaAskell, PamelaMishkin,
Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable
visual models from natural language supervision, 2021.

[32] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine
McLeavey, and Ilya Sutskever. Robust speech recognition via large-
scale weak supervision, 2022.

[33] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. Halide: a language and
compiler for optimizing parallelism, locality, and recomputation in
image processing pipelines. Acm Sigplan Notices, 48(6):519–530, 2013.

[34] James Reed, Zachary DeVito, Horace He, Ansley Ussery, and Jason
Ansel. torch.fx: Practical program capture and transformation for
deep learning in python. In D. Marculescu, Y. Chi, and C. Wu, editors,
Proceedings of Machine Learning and Systems, volume 4, page 638–651,
2022.

[35] Jared Roesch, Steven Lyubomirsky, Logan Weber, Josh Pollock, Marisa
Kirisame, Tianqi Chen, and Zachary Tatlock. Relay: a new IR for
machine learning frameworks. In Proceedings of the 2nd ACM SIG-
PLAN International Workshop on Machine Learning and Programming
Languages. ACM, jun 2018.

[36] Jared Graham Roesch. Principled Optimization Of Dynamic Neural
Networks. PhD thesis, University of Washington, 2020.

1012

https://github.com/onnx/onnx
https://github.com/ggerganov/ggml
https://github.com/ggerganov/whisper.cpp
https://github.com/ggerganov/whisper.cpp
https://github.com/ggerganov/llama.cpp

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Ruihang Lai et al.

[37] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai
Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal
Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bit-
ton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan
Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron,
Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve.
Code llama: Open foundation models for code, 2024.

[38] Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton Jones, and Dim-
itrios Vytiniotis. Destination-passing style for efficient memory man-
agement. In Proceedings of the 6th ACM SIGPLAN International Work-
shop on Functional High-Performance Computing, FHPC 2017, page
12–23, New York, NY, USA, 2017. Association for Computing Machin-
ery.

[39] Junru Shao, Xiyou Zhou, Siyuan Feng, Bohan Hou, Ruihang Lai,
Hongyi Jin, Wuwei Lin, Masahiro Masuda, Cody Hao Yu, and Tianqi
Chen. Tensor program optimization with probabilistic programs. Ad-
vances in Neural Information Processing Systems, 35:35783–35796, 2022.

[40] Haichen Shen, Jared Roesch, Zhi Chen, Wei Chen, Yong Wu, Mu Li,
Vin Sharma, Zachary Tatlock, and Yida Wang. Nimble: Efficiently
compiling dynamic neural networks for model inference. In A. Smola,
A. Dimakis, and I. Stoica, editors, Proceedings of Machine Learning and
Systems, volume 3, pages 208–222, 2021.

[41] Vijay Thakkar, Pradeep Ramani, Cris Cecka, Aniket Shivam, Honghao
Lu, Ethan Yan, Jack Kosaian, Mark Hoemmen, Haicheng Wu, Andrew
Kerr, Matt Nicely, Duane Merrill, Dustyn Blasig, Fengqi Qiao, Piotr
Majcher, Paul Springer, Markus Hohnerbach, Jin Wang, and Manish
Gupta. CUTLASS, jan 2023.

[42] Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an inter-
mediate language and compiler for tiled neural network computations.
In Proceedings of the 3rd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages, pages 10–19, 2019.

[43] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier
Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie,
Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian,
Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xi-
ang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela

Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert
Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open founda-
tion and fine-tuned chat models, 2023.

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc.,
2017.

[45] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,
Clement Delangue, Anthony Moi, Perric Cistac, Clara Ma, Yacine Jer-
nite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-
of-the-Art Natural Language Processing. pages 38–45. Association for
Computational Linguistics, October 2020.

[46] Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan
Feng, Chongyang Tao, and Daxin Jiang. Wizardlm: Empowering
large language models to follow complex instructions. arXiv preprint
arXiv:2304.12244, 2023.

[47] Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze. Sparse-
tir: Composable abstractions for sparse compilation in deep learning.
In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3,
pages 660–678, 2023.

[48] Bojian Zheng, Ziheng Jiang, Cody Hao Yu, Haichen Shen, Joshua
Fromm, Yizhi Liu, Yida Wang, Luis Ceze, Tianqi Chen, and Gennady
Pekhimenko. Dietcode: Automatic optimization for dynamic tensor
programs. In D. Marculescu, Y. Chi, and C. Wu, editors, Proceedings of
Machine Learning and Systems, volume 4, pages 848–863, 2022.

[49] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao
Yu, Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik
Sen, Joseph E. Gonzalez, and Ion Stoica. Ansor: Generating High-
Performance tensor programs for deep learning. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20), pages 863–879. USENIX Association, November 2020.

[50] Zhen Zheng, Xuanda Yang, Pengzhan Zhao, Guoping Long, Kai Zhu,
Feiwen Zhu, Wenyi Zhao, Xiaoyong Liu, Jun Yang, Jidong Zhai, et al.
Astitch: enabling a new multi-dimensional optimization space for
memory-intensive ml training and inference on modern simt archi-
tectures. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 359–373, 2022.

[51] Kai Zhu, Wenyi Zhao, Zhen Zheng, Tianyou Guo, Pengzhan Zhao,
Feiwen Zhu, Junjie Bai, Jun Yang, Xiaoyong Liu, LansongDiao, andWei
Lin. Disc: A dynamic shape compiler for machine learning workloads,
2021.

1013

	Abstract
	1 Introduction
	2 Overview
	3 Relax Abstraction
	3.1 Language Constructs
	3.2 First-Class Symbolic Shape Abstraction
	3.3 Cross-Level Abstraction

	4 Cross-Level Algorithms and Optimizations
	4.1 Shape Annotation Deduction
	4.2 Cross-Level Dynamic Shape–Aware Operator Fusion
	4.3 Dynamic Shape–Aware Memory Planning
	4.4 Cross-Level Tensor Program Workspace Lifting
	4.5 CUDA Graph Offloading
	4.6 Tensor Operator Optimizations via Partial Lowering
	4.7 Optimization and Lowering Pipeline

	5 Evaluation
	5.1 Large Language Model Inference Evaluation
	5.2 Effects of Composable Optimizations
	5.3 Evaluation on More Emerging Platforms
	5.4 Evaluation on Additional Set of Models

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

