Zooming in on Wide-area Latencies to a Global Cloud
Provider

Yuchen Jin
Microsoft/University of Washington
yuchenj@cs.washington.edu

Junchen Jiang
University of Chicago
junchenj@uchicago.edu

Matt Calder
Microsoft
mcalder @microsoft.com

ABSTRACT

The network communications between the cloud and the client have
become the weak link for global cloud services that aim to provide
low latency services to their clients. In this paper, we first character-
ize WAN latency from the viewpoint of a large cloud provider Azure,
whose network edges serve hundreds of billions of TCP connections
a day across hundreds of locations worldwide. In particular, we focus
on instances of latency degradation and design a tool, BlameIt, that
enables cloud operators to localize the cause (i.e., faulty AS) of such
degradation. BlameIt uses passive diagnosis, using measurements
of existing connections between clients and the cloud locations, to
localize the cause to one of cloud, middle, or client segments. Then it
invokes selective active probing (within a probing budget) to localize
the cause more precisely. We validate BlameIt by comparing its
automatic fault localization results with that arrived at by network
engineers manually, and observe that BlameIt correctly localized
the problem in all the 88 incidents. Further, BlameIt issues 72X
fewer active probes than a solution relying on active probing alone,
and is deployed in production at Azure.

CCS CONCEPTS

* Networks — Network performance analysis; Network mea-
surement; Error detection and error correction; Network mon-
itoring; Public Internet;

KEYWORDS

Wide-area network, Network diagnosis, Internet latency measure-
ment, Network fault localization, Tomography, Active network probes

ACM Reference Format:

Yuchen Jin, Sundararajan Renganathan, Ganesh Ananthanarayanan, Junchen
Jiang, Venkata N. Padmanabhan, Manuel Schroder, Matt Calder, and Arvind
Krishnamurthy. 2019. Zooming in on Wide-area Latencies to a Global Cloud

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCOMM 19, August 19-23, 2019, Beijing, China

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5956-6/19/09. .. $15.00
https://doi.org/10.1145/3341302.3342073

Sundararajan Renganathan
Microsoft
t-sur@microsoft.com

Venkata N. Padmanabhan
Microsoft
padmanab @microsoft.com

Ganesh Ananthanarayanan
Microsoft
ga@microsoft.com

Manuel Schroder
Microsoft
manscho @microsoft.com

Arvind Krishnamurthy
University of Washington
arvind @cs.washington.edu

Figure 1: Map of Azure locations worldwide.

Provider. In Proceedings of ACM SIGCOMM 2019 Conference, Beijing,
China, August 19-23, 2019 (SIGCOMM ’19), 13 pages.
https://doi.org/10.1145/3341302.3342073

1 INTRODUCTION

Global cloud services rely on three types of communication: intra-
data center, inter-data center, and the public Internet. Intra-DC and
inter-DC communications, which are under a single administrative
domain, have seen rapid improvement in their performance and
reliability over the years. On the other hand, public Internet commu-
nication, which connects clients to the cloud locations, has seen less
progress because it typically spans multiple administrative domains,
which limits visibility into the network and the velocity of change.
As aresult, the public Internet communication become the weak link
for cloud services. This cloud to client communication is the focus
of this paper.

We focus on a global-scale cloud service, Azure, that hosts a
range of interactive services. Azure’s clients access their content,
over TCP, from the hundreds of its network edge locations worldwide
(see Figure 1). The hundreds of billions of TCP connections from
the clients per day provides a measure of latency — the handshake
RTT from TCP connection setup.

Measurement Characterization: Using a few trillion RTT mea-
surements from a month, we first characterize poor (or “bad”) la-
tency for the cloud-client connections; we define badness based on
Azure’s region-specific RTT targets. Instances of bad latency are

https://doi.org/10.1145/3341302.3342073
https://doi.org/10.1145/3341302.3342073

Desired Property

BlameIt | Tomography [9] | EdgeFabric [32]

PlanetSeer [38] | iPlane [26] | Trinocular [30] | Odin [8] | WhyHigh [22]

Latency degradation

Internet scale

Work with insufficient coverage

Automated root-cause diagnosis

Diagnosis with low latency

Triggered timely probes

ANENEANENENENEN
||| N x| x|
IR IANEIENENEN

Impact-prioritized probes

R RN R AN AR TR
EIEIRIANENRNEN
EIEIANAYANANES
> % NIN N NS
EIRSIEIRANANEN

Table 1: Comparison with prior network diagnosis solutions on the desired properties for scalable fault localization.

not concentrated in a few locations but rather widely prevalent. The
duration of badness (persistence) has a long-tailed distribution: most
instances of badness are fleeting (< 5 minutes) while a small number
of them are long lasting. Finally, despite the widespread prevalence
of badness among many IP-/24’s, the affected clients themselves are
concentrated only in a small number of IP prefixes.

Localization of faulty AS: The administrators of Azure have a
strong need for a tool for fault localization when there is RTT degra-
dation (i.e., the RTT breaches the target), specifically, a tool that
ascribes blame to the AS(es) that caused the spike in RTT. The faulty
AS could be Azure’s cloud network itself or one or more of the
AS’es in the cloud-client path. In our study of actual incidents (§6.3),
we see various reasons for RTT degradation, including overloaded
cloud servers to congested cloud networks, maintenance issues in the
client’s ISP, and path updates inside a transit AS. A tool to localize
the faulty AS, as quickly as possible, will help Azure’s operators
trigger remedial actions such as switching egress peers, or investi-
gating server-side issues, thereby minimizing the duration of user
impact. In the absence of such a tool, the current practice is to inves-
tigate a handful of incidents from the previous day, often chosen in
an untargeted manner, which could lead to wasted effort on issues
that are not fixable by the cloud operators (e.g., client ISP fault) as
well as the ignoring of severe issues (e.g., cloud’s fault with many
affected clients). Hence, the need for an accurate tool to localize the
faulty AS(es). !

Fault localization in the network is a long-standing problem. Ta-
ble 1 summarizes the main prior solutions, along with the desired
properties of a fault localization solution. Our work borrows some
elements from prior solutions but distills an overall approach that
localizes high latency faults while maintaining a frugal budget for
measurement probes and prioritizing the high-impact issues. In par-
ticular, prior solutions can be bucketed into “passive” techniques
that analyze end-to-end RTT data alone [9, 32, 38] or “active” tech-
niques that rely on issuing probes [26, 30]. The former is often
intractable because of insufficient coverage of paths in the mea-
surements, while the overhead of probing with the latter is often
prohibitive. Even when techniques combine passive analysis with
active probing [8, 22], they do not opportunistically use the passive
data for localization (whenever possible), they do not trigger probes
in a timely fashion (during the issue), nor do they prioritize the
probes (for high impact issues). This leads to many unnecessary
probes as well as probing after the incidents. Our work addresses the
above issues and intelligently mixes passive analysis with prioritized
active probing to achieve accurate fault localization at only a fraction
of their probing costs.

'We use the terms “RTT degradation”, “fault”, “issue”, “incident” etc. interchangeably.

Two-phased Design: Our solution BlameIt proceeds in two phases.
The first is a passive phase, where BlameIt uses the RTT data
from the existing TCP connections between clients and the cloud
to coarsely assign blames to the “client”, “cloud”, or “middle” seg-
ments. We define the middle segment as the “BGP path” (set of mid-
dle AS’es between the client and cloud). We avoid the intractability
of classical tomography solutions by leveraging two strong empirical
traits: (1) typically, only one of the AS’es in a client-cloud path is
at fault, and (2) a smaller “failure” set is more likely than a larger
set, i.e., increases in RTT for all the clients connecting to a cloud
location is likely due to a fault at the cloud end and not due to faults
at each of the client AS’es. These traits allow for a hierarchical
elimination approach, starting with the cloud as the potential culprit
and going down to the middle and client segments.

To resolve the location of the “middle” segment problems to
the granularity of an AS (as desired by Azure’s administrators),
BlameIt resorts to an active phase. BlameIt issues traceroutes
from relevant Azure locations to a targeted set of client IPs while
the latency issue is ongoing. The results of these traceroutes are
compared with a baseline obtained from “background” traceroutes,
to localize the specific AS(es) responsible for the increase in latency.
BlamelIt is judicious in its use of traceroutes by prioritizing their
use on those issues that are expected to last for longer and impact
a larger number of clients (both, predicted from historical data).
It also heavily optimizes the overheads of background probes by
trading it for a small drop in accuracy. Overall, we adopt a systematic
measurement-based approach to designing the various aspects in
BlameIt’s two-phased fault localization.

Production Deployment: BlameIt is in production deployment,
its passive component since Nov 2017 and its active component
is beginning to get widely rolled out. Its outputs are used by net-
work operators for their investigations on a daily basis. We compare
the accuracy of BlameIt’s result (i.e., the blamed AS) to 88 inci-
dents that had manual reports and find that it correctly localizes the
fault in all the incidents; §6.3 covers a subset of the incidents. In
addition, BlameIt’s selective active probing results in 72x fewer
traceroutes than a solution that relies on active probing alone, and
20x fewer traceroutes than Trinocular that optimizes probing for
WAN unreachability [30] .

Contributions: BlameIt makes the following contributions.

(1) We present a large-scale study of cloud-client latencies using
trillions of RTTs from a global cloud provider; §2.

(2) We design a practical solution using only passive measure-
ments for coarse-grained fault localization; §4.

(3) We judiciously issue active probes to localize middle segment
issues, while prioritizing the high-impact issues; §5.

RTT measurements | Many trillions
client IP O(100 million)
client IP /24°s Many millions
BGP prefixes 9(100,000)
client AS’es 9(10,000)
client metros O(100)

Table 2: Details of the dataset analyzed (one month in 2018).

2 CHARACTERIZING WORLDWIDE
LATENCY

We present a panoramic view of Azure’s client latency. We first
characterize the general patterns of high latency — prevalence, per-
sistence and long-tailed duration of issues — (§2.2 and §2.3), and
then identify spatial aggregates that account for much of the latency
issues (§2.4).

2.1 Dataset and methodology

Azure’s infrastructure consists of hundreds of network edge loca-
tions, with tens of services hosted at each location. The services are
interactive (latency-sensitive) and cater to consumer and enterprise
clients covering a broad set of products around productivity, search,
communications and storage. Hundreds of millions of clients use the
services on Azure every day.

Each client connection is over TCP to one of the nearest cloud

locations. 2 For each connection, Azure records the TCP hand-
shake RTT at the cloud server. Across all the cloud locations, Azure
records hundreds of billions of RTTs each day. Table 2 lists the
details of our dataset. We use Azure’s targets as the latency “bad-
ness” thresholds and it varies according to the region and the device
connectivity type. 3 The targets are in keeping with the variation in
RTTs across regions and are set such that no client prefix’s RTT is
consistently above the threshold.
Good/Bad Quartet: To understand the structural patterns of high
latencies, we analyze our global-scale dataset through the lens of
quartets. Each quartet is a 4-tuple consisting of (client IP /24 prefix,
cloud location, mobile (or) non-mobile device, 5 minute time bucket).
This definition helps us bundle together the measurements from
clients that are geographically nearby using similar AS-level network
paths [25], and connecting to the same cloud location at similar times.
Despite the fine granularity of slicing, we typically still have many
tens of RTT samples in each quartet.

We classify each quartet as “good” or “bad” depending on whether
the average RTT in that quartet is below or above the corresponding
badness thresholds. Note that we require each quartet to have at least
10 RTT samples for confidence in our estimates. We also verified
that when the RTT samples in a quartet were randomly divided in to
two sets, the Kolmogorov-Smirnov test showed that the samples in
both these sets were from the same distribution.

2The cloud servers are organized into multiple anycast rings and clients connect to the
ring that corresponds to their location and the service accessed, leaving it to BGP to
direct them to the “nearest” server.

3Typically, mobile clients use cellular connectivity while non-mobile clients use a
broadband network. Going forward, we plan to distinguish Wi-Fi connections as well.

H Non-mobile Connectivity

14
12
10
8
6
a4
2
N
u

Worldwide

X Mobile Connectivity

7

N N X N
\ I§ N N W N

A\
S India China Brazil Australia South Africa
Cloud Location

%,

Bad Quartets Fraction (%)

Figure 2: Fraction (%) of quartets whose average RTT was
deemed to be bad. Badness thresholds are set based on Azure’s
region-specific RTT targets.

15 - , ,
10 __\’ /f\l\’ //‘-ﬁ__»," ~-r‘\-/é_ JPV\L Jf "NL /{\

Percentage of Bad Quartets (%)

0 24 48 72 96 120 144 168

Figure 3: Bad quartets (%) by the hour for 1 week in USA (top)
and for two ISPs (bottom). Night hours are marked. Weekend
is between the 48th and 96th hours.

2.2 Spatial & temporal distribution of latencies

Our first set of findings show that the the occurrence of high (or
“bad”) WAN latency is widely spread, both in time and in space.
How prevalent is bad connectivity? Figure 2 plots the fraction
of quartets whose RTT was bad, split by region. We see that high
latency issues are widely distributed, with a substantial fraction
of bad quartets for both mobile and non-mobile connections in all
regions. While the trend on bad quartets generally decreases with the
advancement in network infrastructure of the region (e.g., China and
Australia), we see that surprisingly the USA has a higher fraction of
bad quartets, most likely due to aggressive thresholds for the USA.
We next analyze the prevalence of latency issues from the perspec-
tive of cloud locations. We see that one-third of the cloud locations
have at least 13% bad quartets.
How does badness vary over time? We also study the effect of
time-of-day in the incidents of bad RTTs. Figure 3 (top) plots the
fraction of bad quartets, bucketed by hours, over the course of a
week. While there is an unsurprising diurnal pattern to badness, an
interesting aspect is that the fraction of bad quartets is consistently
higher in the nights than during work hours. We speculate that this is
because the connections during off-work hours would tend to be from
home ISPs compared to the well-provisioned enterprise networks
during the day. Indeed, we see that BlameIt’s fault localization
often lays the blame for the instances of bad RTTs at night on the
client ISP.

1.0

0.8 - -rl"-—
w 0.6
[a)
U 0.4 -

0.2 1

0.0 T T T T

0 5 10 15 20 25
Number of 5-min time buckets
(a)

)
(S}
@®©
o
E
€
2 £
o K === |Pspace
© 0.2 4)
a = Problem impact

0.0 -t T T T T

0 20 40 60 80 100
% <cloud location, BGP path>
(b)

Figure 4: (a) Persistence of bad RTT incidents in a day (in
consecutive 5-min buckets). (b) CDF of problem impact when
(Cloud location, BGP path) are ranked by two orders.

Figure 3 (bottom) zooms in to show that the magnitude of tem-
poral variance can be different; the fraction of bad quartets in ISP1
varies within a range of 5%, while that of ISP2 is over 10%. More-
over, ISP1 shows a different pattern during the weekend (between
the 48th and the 96th hour), in which the diurnal pattern becomes
less obvious than the workdays. All of this suggests that the design
of BlameIt should not assume general temporal predictability to
badness.

2.3 Long-tailed distribution of badness durations

Incidents of bad latency last for different durations and we analyze
the distribution of their persistence. We count the consecutive 5-
minute time windows for which a (IP /24, cloud location, device-
type) tuple suffers poor latency (§2.1). As shown in Figure 4a, over
60% of the issues last for < 5 minutes while only 8% of the issues
last for over 2 hours (with the distribution being long-tailed). In
other words, most of the issues are fleeting rather than long-lived.
Our solution aims to identify the serious long-lived issues and alert
BlameIt’s cloud operators. We also prioritize and issue traceroute
probes during these incidents that help with their investigations.

2.4 Distribution of performance impact

Of relevance to performance diagnosis solutions at global scale (like
BlameIt) is the spatial concentration of issues. For each (cloud
location, BGP path) tuple, we calculate its “impact”: defined as the
number of affected users (distinct IP addresses) multiplied by the
duration of the RTT degradation. BGP path is the set of middle AS’es
between the client and cloud. Measuring impact at the granularity of

Low latency Bl High latency

> Time
IP/24 A (10 users) 20min
<Cloudlocation, | p/34 g (10 users) 20min
BGP path>
#1 1P/24 C (10 users) 20min
<Cloud location, [1P/24 D (100 users) 30min
BGP path>
#2 IP/24 E (100 users) 10min
Weighted by Weighted by actual problem impact
of affected prefixes > (duration) X (# of clients)
#1 3 350
#2 1 2000

Figure 5: Illustrative example of how (Cloud location, BGP
path) tuples can be ranked in two different orderings.

(cloud location, BGP path) naturally aligns with our coarse-grained
segments (covered in §3).

We sort the (cloud location, BGP path) tuples by two metrics
(Figure 5). The simplest is by the number of problematic IP-/24s
contained in the (cloud location, BGP path) tuple, which is similar
to how prior works rank the importance of a spatial aggregate [22].
We could also rank the tuples by their actual impact, as we defined
above. Figure 4b plots the CDF of impact of the tuples when sorted
in these two orderings.

When ranked by the IP-/24s, the top 60% of the {(cloud location,
BGP path) tuples cover nearly 80% of the cumulative problem im-
pact (red line). However, to achieve the same coverage in problem
impact, we only need 20% of the {cloud location, BGP path) tuples,
if we rank them by their problem impact (blue line), or a 3x lower
value.

Thus, our analysis shows that although there is a skewed distri-
bution of the impact of latency problems in the IP space (as also
seen by prior works [22]), there is a much higher skew in the prob-
lem’s impact when viewed jointly in space and time, i.e., the number
of affected users and the problem’s duration. It can be inefficient
to simply use the number of IP prefixes to measure the impact of
RTT degradations. This observation will be central to BlameIt’s
budgeted active probing in §5.

2.5 Summary of observations
The takeaways from our measurement study are as follows:

(1) Spatial and temporal spread of high latencies. Many cloud
locations and client-side prefixes have experienced latency
regression for a non-negligible amount of time.

(2) Long-tailed distribution of badness durations. Most incidents
of bad latencies are fleeting with only a small number of them
being long-lasting and of interest for investigations.

(3) Uneven distribution of the impact of high latencies. Despite
many IP prefixes having high latencies, a substantial fraction
of the affected clients are in a small number of IP prefixes.

3 OVERVIEW OF BLAMEIT

The primary purpose of BlameIt is to help network administrators
investigate reports of poor network performance, i.e., RTTs between
the clients and the cloud locations being above the badness threshold.

BlameIt attributes such path-level latency degradations to localize
the faults at the AS-granularity. In this section, we explain the high-
level intuitions behind our solution before elaborating on the details
in §4 and §5.

3.1 Two-level blame assignment

Modeling the paths between the cloud locations and client at the
AS-granularity, as per traditional approaches [9, 38], is problematic.
First, the coverage of the measurements is skewed and therefore there
are often not sufficient measurements to identify the contributions
by each AS in the path. Second, modeling the graph at the AS
granularity introduces ambiguities, e.g., a large AS like Comcast
might have a problem along certain paths but not all. The impact
of both these problems is compounded when paths in the Internet
change.

Instead of modeling a path as a concatenation of AS’es, BlameIt
views each path in two granularities—a coarse-grained segmentation
of the path into three segments of “client” (the client AS), “cloud”
(the cloud AS), and “middle” (all AS’es between the cloud and the
client), and then a fine-grained AS-level view of only the “middle”
segment. Correspondingly, BlameIt localizes the fault in two steps.

(1) Attribute the blame for latency degradation on one of the
three coarse segments, using only “passive” data.

(2) If a fault is attributed to a middle segment, BlameIt (op-
tionally) moves to the “active” phase to trigger probes for
AS-level fault localization.

Note that modeling each path into three segments (albeit at a coarse
granularity) allows BlameIt to identify localized issues in an AS
that occur only in that path (but not elsewhere in that AS, thus
avoiding the ambiguities explained above).

Coarse Segmentation: The three-way segmentation of each path
into client, middle, and cloud segments is borne out of Azure’s
operational requirements. Localizing the fault to the cloud or the
client AS is already actionable. A cloud-induced latency degradation
would directly lead to personnel being deployed for further inves-
tigation. When the problem lies with the client network (e.g., the
client’s ISP), the cloud operator typically cannot fix the problem
other than informing the client about their ISP choices (e.g., [1]).
Thus, our segmentation proved to be pragmatically beneficial and
allowed for a phased deployment with our coarse-grained fault lo-
calization solution (based on passive measurements) being deployed
in production much earlier.

3.2 Impact-proportional budgeted probing

BlameIt uses active probes (traceroutes) only for fine-grained local-
ization of “middle” segment blames, as these segments may contain
multiple AS’es. Since probing all the paths for full coverage is pro-
hibitive given the sheer number of paths (nearly 200 million per
day; §6.5), BlameIt sets a budget on the active probes and allocates
the budget to probing bad middle segments based on their expected
impact on clients (§2.4), i.e., by estimating how many clients will be
affected and for how long. BlameIt’s budgeted probing is unique in
two aspects compared to prior work (e.g., [22, 26, 38]).

Spatially, BlameIt defines the importance of a segment in pro-
portion to its impact on actual number of clients, rather than just the
addresses in the IP block (BGP-announced prefix) [22]. In Azure’s
operations, large IP address blocks often have fewer active clients

than smaller IP blocks, thus making it desirable to predict and priori-
tize issues affecting the most active clients.

Temporally, by estimating the timespan of each latency degrada-
tion, BlameIt can focus on long-lived problems rather than fleeting
problems that may end shortly after we probe it, thus wasting our
limited budget for probing. Note that we do not need very precise
estimate on the timespan of a problem because of the long tail dis-
tribution of problem durations (§2.3). It would suffice if we only
separate the few long-lived problems from the many short-lived
problems.

3.3 End-to-end workflow

BlameIt’s workflow is as follows. RTT data is passively collected at
the different cloud locations and sent to a central data analytics clus-
ter. A data analytics job periodically makes coarse-grained blame
assignments to all bad RTT instances; §4. These blame assignments
trigger two sets of actions. The middle segment issues are ordered
based on their impact and active probes are issued from the appropri-
ate cloud servers for finer localization; §5. All the latency inflations
are prioritized based on their impact, and the top few are sent to
network administrators for investigation (details in §6.1).

4 FAULT LOCALIZATION WITH PASSIVE
MEASUREMENTS

In this section, we describe BlameIt’s fault localization method
using passive RTT measurements only. We begin by laying down
a set of empirical insights (§4.1) that leads to the practical fault
localization method (§4.2 — §4.3).

4.1 Empirical insights

At first glance, it is tempting to localize faults using standard net-
work tomography techniques, especially given the coarse three-way
segmentation (§3.1) of the network topology. Unfortunately, the
client-middle-cloud segmentation still lacks the topological prop-
erties needed for a standard network tomography formulation. To
see a concrete example, let us consider two cloud locations ¢; and
¢y serving k client prefixes pj ... py in two distinct geographical
regions using two middle segments, m; and m;. Using a drastically
simplified setting where there is no noise in the measurements (i.e.,
the latency values are not obtained from a distribution but are fixed
unknown quantities), we can express the delay measurements (d; ;) as
linear constraints of the following form: I¢, + Iy, +1p ;= d;j. However,
even though there are 2k equations on k +4 variables, we cannot infer
the individual latency values (e.g., l;, Im; or ;). Instead, it is easy
to show that we can only solve for the following composite expres-
sions: l¢, + Iy, — e, —ln, and I — 1, (for s,z € 1...k); see footnote
4. As a consequence, we cannot simply solve for the latency parame-
ters (even at the coarse level of cloud, middle and client segments)
with the observed latency measurements. Solving linear equations
is impractical, even with “boolean” tomography [13, 15, 16] (each
client/middle/cloud segment is either “good” or “bad”, and a path is
good only if all its segments are good).

4There are k equations of the form, (Ie1 + 1 +1p =dn) ... (let + I +1,, = dii) and
k equations likewise for (I +bw +1p =da1) ... (la +lw2 +1p, = dx). Subtracting
within the first k equations will solve for I, — 1, (for s,z € 1...k). Subtracting among

the first and second set of equations will solve for le, + Ly, —le, — I,

We overcome the infeasibility of the above problem formulation
using two key empirical insights. We derive them from the results of
manually-labeled investigations of 88 incidents over many months.
In addition, we also looked at extensive traceroutes collected from
22 Azure locations every ten minutes for 14 days (described in §6.5)
and focused on the RTTs above the badness thresholds.

Insight-1: Typically, only one of the cloud, middle, or client
network segments causes the inflation. For example, inflated latency
between a Azure location and the client might be due to the middle
segment or the client segment but not due to moderate increases
in both. All of the manual reports support this observation. In the
traceroutes, 93% of the instances of RTT inflation is due to just one
of the segments contributing the dominant inflation (> 80%) in the
RTT.

Insight-2: A smaller failure “set” is more likely than a larger
failure set, e.g., when all the RTTs to a cloud location are bad, it is
highly likely due to the cloud segment and not due to all the middle
segments or clients experiencing an issue simultaneously. In our
dataset, over 98% of incidents support this observation. Typically,
each cloud location is reached via many middle segments, each of
which in turn, connects clients from many client IP-/24s.

These two insights allow us to overcome the insufficiency of
measurements by investigating blame assignment sequentially start-
ing from the cloud segment and stopping when we have sufficient
confidence to blame one of the segments. Opportunistically using
the passive data for coarse-segmentation is a key differentiation of
BlameIt: it allows us to overcome the intractability faced by prior
passive techniques [9, 38] while also limiting the need for active
probes [22, 26, 30].

4.2 Coarse-grained Fault Localization

Recall the definition of a “quartet” from §2 that aggregates RTT
values from an IP-/24 block to a cloud location within a 5 minute
window, with each quartet being “good” or “bad” based on the
badness thresholds. Algorithm 1 shows the pseudocode to localize
the cause of the fault in each bad quartet into one of three categories:
the cloud, middle, client segments; it also calls out when the data is
“insufficient” or “ambiguous” to classify a bad quartet.
1) Blaming the cloud: BlameIt starts its blame assignment sequen-
tially beginning with the cloud’s network as the potential culprit. It
takes an aggregate view of the quartets that correspond to a cloud
location in the same time period but spanning a wide variety of client
locations. If a considerable majority (> 7) of the IP /24’s connecting
to a cloud location see bad RTT values, then BlameIt concludes
that the cloud’s network is at fault (lines 5 and 12-13 in Algorithm
1). In our deployment, we set T = 0.8 and it works well in practice.
Starting the assignment of blames from the cloud segment of the
network (instead of the client) gives us more diverse RTT samples.
Each cloud location (in a 5 minute window) has clients connecting to
it from hundreds of thousands of /24 IP blocks across thousands of
client AS’es. Bad performance across this broad spectrum makes it
more likely that the cloud’s network is the problem than independent
problems afflicting the various clients (insight-2 in §4.1). In contrast,
the client side does not have the same richness of measurements.
Hence, we start blame assignment in Algorithm 1 from the cloud
segment.

Algorithm 1: BlameIt using passive measurements.

Input :1) Quartets, Q:
(IP-/24, cloud-node, time, mobile, BGP-path, RTT)
2) List of cloud locations, C
3) List of BGP-Paths, B
Output: Assign Blame to each “bad” quartet
Dictionary<Segment, float> Bad-Fraction — ¢
Dictionary<Segment, int> Num-Quartets — ¢
/* Populate dictionaries for cloud nodes */

foreach cloud-node c in C do
Num-Quartets[c] — CalcNumQuartets(c, Q)

s | Bad-Fraction[c] — CalcBadFraction(c, Q, c.expected-RTT)

S

W

/* Populate dictionaries for middle BGP-paths */
6 foreach BGP-path b in B do
7 Num-Quartets|m] — CalcNumQuartets(m, Q)
8 | Bad-Fraction[b] — CalcBadFraction(b, Q, b.expected-RTT)

/* Blame assignment for each quartet */

9 foreach quartet q in Q with q.RTT > Threshold_RTT do
// Customized badness threshold for RTT

10 if Num-Quartets[q.cloud-node] < 5 then

11 | a.Blame < “insufficient”

12 else if Bad-Fraction[q.cloud-node] > 7 then
13 | g.Blame < “cloud”

14 else if Num-Quartets[q.BGP-path] < 5 then
15 | a.Blame < “insufficient”

16 else if Bad-Fraction[q.BGP-path] > 7 then
17 | a.Blame < “middle”

18 else if .IP-/24 has “good” RTT to another cloud-node then
19 | a.Blame < “ambiguous”

20 else

21 | a.Blame < “client”

A subtle aspect to note is that the CalcBadFraction() method
in Algorithm 1 does not weight the quartets by the number of RTT
samples contained in them. Even though different [P-/24s may have a
varying number of connections (and hence, RTT samples) to a cloud
location, weighting has the undesirable effect of a small handful of
“good” IP-/24s with a large number of RTT samples masking the bad
performance seen by many IP-/24s connecting to the same cloud
location.

While bad quartets are identified using the RTT thresholds (§2),

BlameIt also learns the typical RTT value of clients connecting to
each cloud location, c.expected-RTT. It uses deviation in this expected
value for blame attribution. §4.3 provides the justification and details
of this learning.
2) Blaming the middle: If the fault does not lie with the cloud
network, the next candidate is the middle section of the network. As
defined earlier, this is all the AS’es in between the cloud network
and the client prefix.

BlameIt groups all the quartets sharing the same set of AS es
in the BGP routing path between the client IP-/24 and the cloud
location (we refer to this set of middle AS’es as “BGP path”) to
identify middle segment faults. If all these quartets sharing the same
middle AS’es have bad RTT values, we attribute blame to the middle
segment (lines 8 and 16-17 in Algorithm 1). As before, we learn the
expected RTT of each middle segment (b.expected-RTT) and look for
deviations.

)
0.8 ,/
w 0.6 ,/
(@]
0.4
o BGP prefix
0.2 - - - BGP atom
2 s - === BGP middle AS'es path
0.0 7 T

T T ML | T ML | T ML |
10° 10! 102 103 104
Number of other IP /24's sharing the middle mile

Figure 6: CDF of the number of IP /24’s sharing the same “mid-
dle segment” (different definitions) within 5 minutes.

We arrived at the decision to group clients by the BGP-path after
exploring multiple options. While we considered grouping by the
client AS and metro area, based on prior studies [25], we notably
found on analyzing Azure’s BGP tables that only 47% of clients in
the same (AS, Metro) clients see a single consistent path from the
Azure location even within a 5-minute window. Thus, we conclude
that the granularity of (AS, Metro) is too coarse-grained.

We also considered two other subtly different options. Let the

BGP tables at Azure contain two entries to client prefixes C1 and
C2,(G — X;— X,— Cl)and (G — X|— Xp— C2); note that both C1
and C2 prefixes could be coarser than /24 addresses and in different
AS’es. To analyze a bad quartet from C1, we could look at all the
RTT values traversing either the path (X;— X,— C1) or the path
(X1— Xp— C), where C is the AS of the prefix C1. The former (called
“BGP prefix”) is fine-grained while the latter (called “BGP atom”
[6]) is coarser. As Figure 6 compares, using our solution of “BGP
path” provides us with more RTT samples than both these options,
and hence gives us more confidence while still being accurate. Thus,
we decide to group by the BGP path, i.e., all the AS’es in between
the cloud network and the client prefix.
3) Blaming the client: Finally, we ascribe blame to the client seg-
ment of the network path (lines 20-21). However, if the client IP-/24
has connected to other cloud locations in the same time period but
experienced good RTT performance, we label the quartet as “am-
biguous” (lines 18-19) because there is not a way to conclusively
assign blame.

Finally, in any step, if the number of RTT samples is too small,
BlameIt outputs “insufficient” (lines 10-11, 14-15).

4.3 Learning RTT thresholds

Central to the cloud and middle segment blame assignments in
Algorithm 1 are two RTT thresholds c.expected-RTT and b.expected-
RTT. These thresholds compare against the expected RTTs of clients
connecting to each of the cloud locations and traversing each middle
segment of the network, and are also learned separately for mobile
and non-mobile clients.

Cloud Segment c.expected-RTT. Learning the RTT values sepa-
rately for each cloud location helps us identify inflations in RTT
at each cloud location compared to its own historical values. In
general, c.expected-RTT is less than the (region-specific) RTT bad-
ness thresholds. We provide a simple example to show how using
c.expected-RTT instead of the badness threshold in Algorithm 1 (lines
5 and 12-13) disambiguates cloud faults. Consider the case when

the RTT between a client IP-/24 and cloud location X is 55ms, with
the RTT threshold being 50ms. Say, this is only due to a fault inside
Azure, so assuming everything else is unchanged, the cloud should
be blamed.

Let us assume that the RTTs of client IP-/24s connecting to X
uniformly varied between [35ms, 45ms] historically, thus c.expected-
RTT is learned to be 40ms. After the fault, due to X’s increased
contribution, the range changes to uniformly vary between [40m:s,
70ms]. If we were to use the RTT threshold itself (of 50ms) in
Algorithm 1, only % of the quartets connecting to X will be bad
(in between [40ms, 70ms]) and the blame will not fall on the cloud
network (since 7 = 0.8). However, using c.expected-RTT = 40ms leads
to the correct blame assignment as the RTTs are all above this learned
value.

We use the following simple approach to learn c.expected-RTT for
each cloud location. We use the median of RTT values from the last
14 days as the c.expected-RTT of connections to that location. (Using
the median of historical values and 7 = 0.8 essentially means that we
check if the distribution has shifted “right” by 30%; we picked these
parameters by extensive analysis of our incidents and can vary them
adaptively.) While we considered other approaches like comparing
the RTT distributions, our simple approach works well in practice.
Middle Segment b.expected-RTT. We also observe considerable
difference between the RTTs traversing the BGP paths (10x differ-
ence between the 101 and 90t percentile RTTs). As before, we set
the m.expected-RTT thresholds for each middle segment (BGP path),
learned as the median from RTT values of the past 14 days, and look
for deviations.

S FINE-GRAINED LOCALIZATION WITH
ACTIVE PROBES

We build on the techniques in §4 to judiciously employ active mea-
surement for fine-grained fault localization of middle segment faults.
We begin by explaining the rationale behind selective active prob-
ing (§5.1), present an overview of our approach (§5.2), and then
explain how we optimize both our on-demand as well as background
traceroutes (§5.3 and §5.4).

5.1 Rationale for selective active probing

Algorithm 1 blames the incidence of high RTT to one of three
network segments: cloud, middle, or client. While attributing blame
to the cloud or client segment automatically identifies the specific
AS responsible for the latency degradation, attributing blame to the
middle segment of the network could be due to any of the AS’es
in the BGP path between the cloud and client could be causing the
degradation.

We considered extending the approach of “hierarchical elimina-
tion” of Algorithm 1 to the AS-level graph, with the blame being
attributed to the AS common to the paths of the majority of con-
nections that are experiencing high RTT. In practice, however, the
data density is insufficient for such AS-level analysis. While we
considered coarsening the definition of a quartet (e.g., larger client
IP aggregates than /24’s or wider timer buckets than 5 minutes),
we decided against it as it would hurt the accuracy of the fault
localization.

Active measurements — issuing continuous traceroutes from the
different Azure locations to client locations — is a natural approach

to localize faults. [22, 26, 30] However, for accurate localization
of the middle AS, we need continuous traceroutes so that we have
data to compare before and after an incident. As our calculations
in §6.5 will show, that works out to nearly 200 million per day,
an amount that is prohibitive and infeasible in Azure’s production
deployments. Besides the overhead, such volumes could also trigger
security alarms in the various AS’es since the traceroute packets and
their ICMP responses could be mistaken for probing attacks [24].

Due to routing asymmetries [19], the “forward” (cloud-to-client)
and “reverse” (client-to-cloud) Internet paths can be different. Our
current solution only uses traceroutes issued from the cloud locations
(for ease of deployment) but we believe that reverse traceroute tech-
niques [20] can be incorporated into BlameIt’s active phase. Azure
already has many users with rich clients [8] that can be coordinated
to issue traceroutes to measure the client-to-cloud paths.

5.2 Approach for fine-grained localization

Our approach for fine-grained fault localization is as follows: judi-
ciously issue “on-demand” traceroutes based the passive analysis of
RTTs (§4), and then compare these measurements with the baseline
established through infrequent “background” traceroutes to obtain
the picture prior to the fault. We illustrate how these traceroutes are
compared using an simple example.
Illustrative Example: Consider the following example, modeled
on a real-world investigation in India, on how the background and
on-demand traceroutes are compared. The AS-level path between
cloud X and client ¢ is X - m1 - m2 - ¢. The RTT observed by
the background traceroutes from X to the last hop in each of these
four AS’es was 4ms, 6ms, 8ms and 9ms, respectively. However,
after the latency degradation, the corresponding values became 4ms,
60ms, 62ms and 64ms. Specifically, the individual contribution of the
middle AS m1 went up from (6 —4) = 2ms to (60 —4) = 56ms, thus
pointing to m1 as the reason behind the performance degradation. 3
There are two key challenges to realizing the above approach at
scale. 1) First, we have to be judicious about when to issue “on-
demand” traceroutes since fine-grained localization might be of little
interest for issues that are ephemeral and/or only affect a small
number of clients. 2) Second, background measurements have to
be optimized so that they are not wasteful or cause a significant
increase in network traffic. We next present BlameIt’s solution
to both issues — prioritized on-demand measurements (§5.3) and
optimized background measurements (§5.4).

5.3 Prioritized On-Demand Measurements

BlameIt prioritizes on-demand traceroutes for latency degradations
that, (1) have lasted for a long duration, (2) are expected to persist
for longer durations, and (3) would potentially impact many clients.
Prioritization helps BlameIt focus on issues of most impact to
clients while avoiding the high probing overheads of prior solutions
[22, 26, 30]. As §2.3 and §2.4 showed, there is considerable variation
across the middle-segment issues. They may impact just 10 clients
or all the way up to 4 million client IPs. While some issues are
ephemeral, others can last multiple hours.

SWhile the latency measurements to a later hop in traceroutes could be smaller than to
an earlier hop [5, 28, 35], this issue is less prevalent when we look at latencies at the
level of AS’es.

Client-time Product: To prioritize the middle segment issues, we
use “client-time product” as our metric. Client-time product is simply
the product of (a) the predicted duration of bad performance of the
middle segment, multiplied by, (b) the number of clients that are
expected to access the cloud via that middle segment in that period
(and hence, will be impacted). This is akin to the metric in §2.4 but
with estimated values.

Budgeted Prioritization: BlameIt operates under a “budget” for
traceroutes defined in the number of traceroutes permissible out
of each of Azure’s cloud locations per time window (say, every 5
minutes or every day). For simplicity, we avoid setting budgets per
AS and instead employ a larger budget for traceroutes emanating
from a cloud location.

Our prioritization takes all the quartets with middle segment issue
(from Algorithm 1), and groups them by their AS-level BGP path
(m1-m2in §5.2’s example). This grouped set P contains all the paths
with at least one problematic AS. For each path p in P, we predict the
two metrics ((a) and (b)) that are needed to calculate the client-time
product. We sort paths in descending order of client-time product
and issue traceroutes within the budget (one per middle segment
issue). We next explain how the two two metrics are estimated.

(a) Predicting the duration of degradation. BlameIt estimates the
probability of a problem persisting given that the problem has lasted
thus far. Specifically, if an issue has lasted for a duration ¢, it esti-
mates the probability of it lasting for an additional duration T, P(T |r).
Using estimates of P(T'|r) for different values of T', we can calculate
the expected duration, Z?“ﬁ P (T\t) * T, for which the issue will
persist. We increase 7T in increments of 5 minutes. We obtain P(T|r)
for various T values based on historical fault durations in each BGP
path. Given the long-tailed distribution of problem durations (§2.3)
we only need to separate out the long-lived problems rather than
precisely estimate the duration of each problem.

(b) Predicting the number of impacted clients. BlameIt uses his-
torical data to also predict the number of clients that are likely to
connect (and hence, be impacted) during an issue. We empirically
observe that predicting the number of active clients in a BGP-path
using the same 5-minute time window in the previous days is more
accurate than using recent history (e.g., a few prior time windows
in the same day). Hence, we use the average number of clients that
connected via the same middle BGP-path in the same time window
in the past 3 days.

The above approaches work well in practice with our prioritization
of traceroutes closely matching an oracle (§6.5).

5.4 Optimized Background Measurements

Recall from the example in §5.2 that BlameIt uses traceroutes from
before an incident of RTT degradation to localize the faulty AS.
These “background” traceroutes are in addition to those issued for
Algorithm 1’s middle segment faults. Background traceroutes are
issued periodically to each BGP path as well as triggered based on
BGP path change at Azure’s border routers.

To keep the overhead manageable, the periodic traceroutes are
performed infrequently, two times a day to each BGP path from
each Azure location. As we report in §6.5, the relative stability of
Internet paths in normal times means that the above low frequency
is a good “sweet spot” between traceroute overheads and accuracy
of fault localization.

Cloud Locations Data Analytics Cluster

Active Traceroutes\ | 1

Background

4

1y]

19 ©

On-demand 3 5

’ P old e

—_ Background O o, 3 I‘é o

3 = S l'g i‘é

3 RTT Collector € H

o 18 2
= wv

S . AN £ L 2

2 . E S L] passive || | i

2 & Blamelt 4]

S RTT Collector T]

= | -

© Active Traceroutes " o I _<°

<= | g

On-demand [i o

8

=

| o |

Figure 7: BlameIt’s key components in production.

In addition, we use information from Azure’s BGP listener, which
connects to all of the border routers over IBGP, to determine if the
AS level path to a client prefix has changed at a border router or a
route has been withdrawn. In either case, we issue a traceroute to that
client prefix from the cloud location which connects to the border
router in question. Favorably for us, analysis of BlameIt’s BGP
messages show that nearly two-thirds of the BGP paths at the routers
do not see any churn in an entire day, thus limiting our overheads.

The combination of periodic (but infrequent) traceroutes and
traceroutes triggered by BGP churn enables BlameIt to maintain
an accurate picture of paths from the cloud to clients in various
locations with low overhead.

6 EVALUATION

BlameIt is in production deployment at Azure (§6.1 and §6.2);
here are the highlights.

(1) BlameIt’s fault localization matches the results from manual
investigations in 88 real-world incidents. §6.3

(2) As further validation, we also use large-scale traceroutes to
corroborate BlameIt’s accuracy. §6.4

(3) Active probing with BlameIt prioritizes the right middle-
segment issues and is 72x cheaper. §6.5

6.1 Implementation and Deployment Details

BlameIt is in production deployment, its passive component since
Nov 2017 and its active component beginning to get widely rolled
out. Figure 7 shows all its relevant components. RTTs (from TCP
handshakes) are continuously collected as clients connect to Azure
and are aggregated at an analytics cluster where the BlameIt script
runs periodically. Its outputs trigger prioritized alerts to operators,
and targeted traceroutes to clients.

RTT Collector Stream: Azure’s cloud locations generate two data
streams, one containing the client’s IP and the other the RTT (in
addition to many other fields). These two streams had to be joined
(via a “request id”) for BlameIt’s Algorithm 1 to be executed. Since
these streams were large in size, their joining happened only once
every day to limit the load on the data analytics cluster. As part of
BlameIt’s deployment, we modified the RTT stream to also include
the client IP field, thus not needing to wait for the joining.

= Cloud = Client == |nsufficient

§ Middle === Ambiguous

w 50

1]

E 40 o —

S 30 +

(o4

5 20 A

g 10 e

o <

B e~ —

g 0 L T T T T T

= 0 5 10 15 20 25 30
Day

Figure 8: Blame fractions in a one-month period.

Periodic execution: BlameIt’s Algorithm 1 is scheduled to execute
every 15 minutes (which is sufficient given the long-tailed distribu-
tion we saw in §2.3). We encountered one tricky issue in running
BlameIt every 15 minutes. Every hour, a few hundred “storage
buckets” are created afresh and each RTT tuple is written into a
randomly chosen bucket. This leads to a loss of temporal ordering
within the hour, so each run of BlameIt, even though it needs only
the last 15 minutes of data, has to read all the buckets filled thus
far in that hour (and filter out RTTs). We are currently working on
creating finer buckets.

Active traceroutes: BlameIt’s outputs are used to prioritize middle
segment issues and issue traceroutes to the clients. This module pe-
riodically fetches the destinations from the analytics cluster to issue
on-demand traceroutes (§5.3) . Finally, it also issues background
traceroutes (§5.4) at a regular cadence. For issuing traceroutes, we
use the native Windows tracert command.

Network Operators: BlameIt helps prioritize the issues based on
their business impact and the top few are automatically “ticketed”
for investigation. The detailed outputs of BlameIt are auto-included
in these tickets for ease of investigation. BlameIt’s coarse segmen-
tation of the issues helps route the tickets to the appropriate teams to
investigate server issues, networking issues, peering relationships,
etc. Crucially, they only investigate high-impact and relevant issues.

6.2 Blame Assignments in Production

Each day, BlameIt assigns blames for millions of “bad” quartets
whose RTT are above the badness thresholds. We present a flavor
of the results of BlameIt’s Algorithm 1 — the blame fractions and
durations of badness.

Figure 8 plots the fraction of blame categories worldwide for a
one month period. We notice a general stability of the fractions ac-
counted by each blame category, with middle segment issues slightly
higher than client issues. Even though cloud segment issues gener-
ally account for less than 4% of bad quartets, these are investigated
with high priority. Their increase around day-24 in Figure 8 is due
to a scheduled maintenance.

Figure 9 takes one of the days and splits the blame fractions by
cloud regions. One notable aspect is that middle segment issues
dominate in India, China and Brazil. This is likely due to the still-
evolving transit networks in these regions, compared to relatively
mature regions like the US. Another aspect we notice is that the
“insufficient” and “ambiguous” categories constitute a high fraction,
but this presents an interesting quandary: we can relax our minimum
RTT samples and use coarser grouping for middle prefixes (like AS,

H Cloud < Middle # Client # Ambiguous M Insufficient

-
=]

N 3
— 50 N
S \ N N
=40 N N AN
& N N N N
-3 30 N % N N
g 20 } N S
ks N N N
10 N N N 7
M. Y N 7
0 - s —N - 7% [BNY 1/
India China Brazil Australia South Africa

Could Location

Figure 9: Blame fractions for one day in six cloud locations. (In
each location, the blame fractions sum to 100%.)

1.00 1.00 1.00
0.75 0.75 0.75
& =} &
3] 0.50 5] 0.50 8 0.50

0.25 0.25 0.25

0.00 0.00 0.00
0 5 10 15 20 25 [5 10 15 20 25 0 5 10 15 20 25

Duration Duration Duration

(a) Cloud (b) Middle (c) Client
Figure 10: Duration of cloud, middle, client segment issues in

the units of consecutive 5-min time buckets.

Metro) to reduce these categories, but it would likely come at the
expense of accuracy of our fault localization. We could also issue
traceroutes to the clients in these two categories, but that would
increase the overheads of active probing.

Finally, how long do the different badness incidents last? Back
in §2.3 we had observed a long-tailed distribution of all badness
incidents, and Figure 10 breaks their durations by blame categories;
similar distributions persist across the categories. Cloud issues gen-
erally last for lesser durations than middle or client segment issues,
possibly explained by Azure dedicating a team to fix them at the
earliest.

6.3 Real-world Case Studies

We analyzed investigation reports from 88 incidents of latency degra-
dation in production that were investigated by Azure’s network ad-
ministrators. As part of their investigations, they look at performance
logs, network captures, as well as communicate with administrators
in other AS’es. Their reports document the cause behind the degra-
dation and identify the faulty AS. An encouraging result is that
BlameIt’s localization of the faulty AS matched the conclusions of
the network administrators for all the incidents. We now discuss a
few in detail to present a flavor of the faults, including some where
BlameIt helped with the investigation.

1) Maintenance in Brazil: Azure’s cloud network in one of the
locations in Brazil had internal routing issues due to an unfinished
maintenance operation that considerably increased the latency of
the southern American clients that were connecting to the location.
Since the incomplete maintenance was not detected, clients were
not rerouted to a different location and investigations focused on
other segments of the network including peering AS’es. The issue
was finally fixed after a couple days. This incident was before the
deployment of BlameIt and post facto analysis of the RTT logs
shows the correct localization of the fault on the cloud segment.

2) Peering fault: There was a high-priority issue where many
customers of Azure’s services experienced high latencies. This was
a widespread issue affecting many clients in the USA in the east
coast, west coast, and central regions. BlameIt correctly identified
it to be a “middle segment” issue, thus avoiding the unnecessary in-
volvement of Azure’s internal-networking teams. Finer localization
revealed that the issue was due to changes inside a peering AS, with
which BlameIt peers at multiple locations.

This incident provided an interesting comparison with other mon-
itoring systems. One system was based on periodic traceroutes from
a small fraction of Azure’s clients, but these clients happened to
not be impacted much by this issue and hence did not detect the
problem (in other words, lack of coverage of client “vantage points”,
a problem that BlameIt does not face). Another system made web
users download a small web object to measure the latency, but these
active measurement were conservatively deployed to limit overheads
(since they were not triggered in a targeted manner, like BlameIt
does using analysis of passive data). Finally, the system to monitor
RTTs in each AS, metro also did not raise an alarm because no single
AS, metro was excessively affected even though there were many
affected clients countrywide (speaks to the value of BlameIt’s fine-
grained analysis using BGP-paths and client IP-/24s). Combining
large-scale aggregated measurements, we can detect and localize
even slight but widespread increases in latency.

3) Cloud overload in Australia: Recently clients of Azure con-
necting to a cloud location in Australia experienced higher RTTs
than the RTT targets. During this incident the median RTT went up
from 25ms usually to 82ms. An interesting aspect in the investigation
of this incident is that many clients sharing the BGP paths to reach
this specific location (in Australia) saw increases in their RTTs. How-
ever, BlameIt’s approach of starting the blame assignment from the
cloud (Algorithm 1) ensured that the blame was correctly pinpointed
to the cloud segment (and not the middle BGP paths). As a valida-
tion, even though the same BGP paths were also used to connect
to other nearby cloud locations in Australia, those clients did not
experience bad RTTs (Insight-2 in §4.1). Investigations tracked the
issue to an increase in CPU usage of the servers (overload) that was
leading to the spike in RTTs.

4) Traffic shift from East Asia to US West coast: Due to some
unforeseen side-effects of changes in BGP announcements, Azure
clients in east Asia were starting to get routed to Azure’s locations
in the US west coast instead of the locations in east Asia. This sub-
stantially increased their latencies and BlameIt blamed the middle
segment. The ISPs of east Asian clients did not have good peers and
connections to route them to the US west coast, since traffic rarely
gets routed that direction, and thus, the middle segments contributed
to the substantial increase. The issue was fixed with the east Asian
clients being redirected back

5) Client ISP issues in Italy: The median RTT of Azure users in
a major city in Italy increased from the usual value of 9ms to 161ms.
Given the substantial increase in RTT, the persistence of the issue,
and the high number of users that were affected, an investigation was
launched that concluded that the increase was due to a maintenance
inside the client ISP, for which no advance notice was provided.

This incident was prior to BlameIt’s deployment, but our anal-
ysis shows that BlameIt would have blamed the client AS with a
high confidence of 93% (confidence is obtained by calculating the
proportion of quartets blamed in each category of Algorithm 1). It

= = = Blamelt with <AS, Metro> only grouping
Blamelt with BGP-path grouping

T T
0.0 0.2 0.4 0.6 0.8 1.0
Corroboration ratio

Figure 11: Large scale traceroute based validation. Corrobora-
tion ratios of BlameIt to clients in 1,000 BGP paths.

would have avoided this wasted effort as there was little that Azure
could do in fixing the issue.

6.4 Large-scale Corroboration

The case studies above are encouraging and notes by network opera-
tors help us see the value provided by BlameIt in their diagnoses.
However, we also corroborate the results of BlameIt at a larger scale
by comparing its results with those from continuous traceroutes. We
continuously issue traceroutes (every minute) from different Azure
locations to clients in 1,000 select BGP paths. We treat the latency
contributions (of each AS) from the traceroutes as the “ground truth”.
When latency goes beyond the targets, we compare each AS’es “nor-
mal” contribution to the end-to-end latency with the contributions
Jjust after the incident. We call the AS with the most increase in its
contribution as the culprit AS. We compare this result to BlameIt’s
identification of the culprit AS. Given the overhead of such large-
scale traceroutes, we had to restrict this experiment to only three
Azure locations in the US east coast for one day.

For each BGP path, we measure its corroboration ratio, defined
as the fraction of latency issues where BlameIt’s passive diagnosis
(of the culprit segment) matched the traceroutes. Note that this can
include any of the AS’es in the middle or the client AS or Azure;
recall from §4 that the blame is ascribed to only one segment. Figure
11 plots the CDF of corroboration ratios of the 1,000 BGP paths.
We observe near-perfect corroboration (ratio of 1.0) for nearly 88%
of the paths (orange line), thus showing that despite the two-level
approach used by BlameIt, it does not lead to loss in accuracy. The
figure also vindicates our decision to use BGP paths to group clients
in the same middle segment as opposed to the traditional practice of
grouping them by (AS, Metro) [25], which significantly lowers the
corroboration ratio (blue line).

To reiterate, BlameIt’s high accuracy is without the high over-
head of continuous traceroutes (which we deployed only for obtain-
ing the ground truth for large-scale corroboration). We next analyze
the aspects of our selective probing from §5.

6.5 Active Probes for Middle Segment Issues

We dig deeper into BlameIt’s active traceroutes for fine-grained
localization of middle segment issues.

For extensive data-driven evaluations, we issued traceroutes from
22 Azure cloud locations to 85,100 client IP /24’s in 23,000 BGP
paths, once every 10 minutes for a period of 14 days. As in §6.4,
we use the traceroutes as ground truth for contributions by each AS.

Y 100 i o—=
> .
B = (5%, 83%)
e 754,
Y- O
Sy f
E g 50 4/
ox ‘ = = Oracle
225
k9] ‘ Blamelt
O 0 -7 T T T T
0 20 40 60 80 100

Middle Segment Issues (%)
Figure 12: CDF of client-time product of middle segment issues

ranked by the Oracle.

M Periodic probing M Periodic probing + BGP churn

100

2 days l1day 12hours 6hours 1hour 30mins 10 mins

[R
o u

Accuracy (%)
&

Probing frequency

Figure 13: Accuracy of active BlameIt under different probing
frequencies with/without probes triggered by BGP churn.

We identify middle segment issues, and identify the faulty AS in
the middle by comparing against its historical contributions to the
end-to-end latency.

Client-time product: Recall from §5.3 that BlameIt prioritizes on-
demand traceroutes for middle segment issues based on an estimate
of their client-time product. We had settled on simple approaches
for our estimations and Figure 12 illustrates that as a result of our
accurate estimates, we are able to prioritize the traceroutes as good as
an oracle; Figure 12 sorts the middle segment issues (on the x-axis)
by their client-time product as calculated by the oracle. Note that
5% of the middle segment issues cover over 83% of the cumulative
client-time product impact. Thus, a 5% budget would suffice for
diagnosing the high-impact middle segment issues.

Background probing frequency vs. Accuracy: There is an intrin-
sic trade-off between the frequency of background traceroutes (§5.4)
and the accuracy of the fault localization. Too fine a frequency in-
creases the accuracy but at the expense of overheads. Sending a
probe every ten minutes to cover all the BGP paths achieves high
accuracy, but to cover all the BGP paths seen across all the Azure
locations, this amounts to nearly 200 million traceroutes out of
Azure each day, an unacceptably high overhead. Figure 13 plots
how the accuracy drops at lower probing frequencies. We notice a
“sweet spot”: with a frequency of once per 12 hours (along with BGP
churn triggered probes), we still obtain an accuracy of 93%. This
frequency represents a traceroute overhead that is 72x lower, and
this is feasible for Azure.

We also compare BlameIt to Trinocular [30] that diagnoses
WAN unreachability (not latency inflation) using an optimized net-
work model to trigger active probes. Compared to Trinocular, BlameIt
issues 20 x fewer active probes.

7 RELATED WORK

We briefly survey several strands of work related to BlameIt.

Diagnosis by passive/active measurements: Diagnosing anom-
alies in network performance has been studied extensively (e.g., [8,
21, 23, 27]); see Table 1. Network tomography based solutions [3,
9, 20] passively deconstruct end-to-end performance, but run into
intractable formulations at scale. The passive diagnosis approach in
BlameIt is closest to NetProfiler [29]. However, BlameIt operates
at much larger scale and its selective active probing triggered by
passive analyses.

Other works [12, 17, 22] combine passive measurements and
active measurements to identify problems, while Odin [8] probes
randomly selected clients to maintain visibility to alternate network
paths. But these works do not use passive data to minimize the
active probes, do not trigger probes during a latency degradation (are
essentially “offline”), and waste many probes due to lack of impact
prioritization.

Many works make optimal use of a measurement budget for
probing, e.g., Trinocular [30], Sibyl [11], iPlane [26]. However,
BlameIt is distinguished from this prior work in its approach to
predict the impact of latency degradation (e.g., how many clients
would likely be affected) in deciding which problems to investigate.
Finally, solutions that rely on rich information (e.g., TCP logs)
collected at end-hosts for diagnosis [4, 31] are feasible in datacenters
but harder to deploy in the inter-domain wide-area.

Measurement of WAN latency: WAN latencies have been stud-
ied from the viewpoint of the cloud networks. The most relevant
studies are those on network path inflation (e.g., [33, 34]), alternate
paths (e.g., [22]), deployment of CDN servers (e.g., [7]), IXP perfor-
mance (e.g., [2]), application-level overlay paths (e.g., [18]). While
these studies provide valuable insights on WAN performance in the
wild, such offline analysis is not an integrated part in the online
operations for fault diagnosis. Partly inspired by the prior mea-
surement studies, BlameIt seeks to understand the typical latency
degradations from the viewpoint of Azure, and more importantly, it
provides a measurement-based solution to automate the process of
root-causing the degradations.

Others seek to obtain a comprehensive view of the network con-
ditions by redirecting existing traffic flows (e.g., Edge Fabric [32],
Espresso [37]) or by performing active measurements (e.g., En-
tact [39]). Although network performance is explicitly measured in
these schemes, such measurements are purely end-to-end.

CDN traffic engineering: There has been substantial work on
server selection in CDNs, with a range of approaches, including IP
anycast [8], DNS-based redirection (including EDNS extensions to
help better identify the client [10]), or anycast-based DNS server
selection with co-located proxies [14]. Anycast-based selection, in
particular, only has a loose connection to network performance
since it depends on BGP routing to direct the client to a server.
CDN performance can be significantly improved by choosing the
network path and ingress point a client should be directed to as a
function of path performance (e.g., [8, 32, 36, 37, 39]). Blamelt is
complementary to these techniques, as it can serve as a common
underlay that provides insights on network performance for CDN
traffic engineering.

8 CONCLUSION

We presented BlameIt, a tool that automatically localizes the faulty
AS when there is latency degradation between clients and cloud loca-
tions, using a combination of analysis of passive measurements (TCP
handshake RTTs) and selective active measurements (traceroutes).
Such a tool is highly valuable for global cloud providers like Azure.
BlameIt smartly leverages the passively collected measurements
and a small amount of active probes for its fault localization. In doing
s0, BlameIt avoids the problems of intractability that stifled prior
tomography based solutions and prohibitively high overhead that
plagued probing solutions based on global vantage-points. BlameIt
is in production deployment at Azure and produces results with high
accuracy at low overheads.

Ethics Statement: This work does not raise ethical issues.

ACKNOWLEDGMENTS

We would like to thank the anonymous SIGCOMM reviewers and
our shepherd Theophilus Benson for their valuable feedback. We
also would like to call out the invaluable support of the Azure Front
Door team members, especially Minerva Chen and Madhura Phadke,
for their role in testing and deploying BlameIt. Sorabh Gandhi
provided feedback in the early stages of the work.

REFERENCES

[1] Google Video Quality Report. https://support.google.com/youtube/answer/
6013340?hl=en.

[2] B. Ager, N. Chatzis, A. Feldmann, N. Sarrar, S. Uhlig, and W. Willinger. Anatomy
of a large european ixp. ACM SIGCOMM Computer Communication Review,
42(4):163-174, 2012.

[3] B. Arzani, S. Ciraci, L. Chamon, Y. Zhu, H. H. Liu, J. Padhye, B. T. Loo, and
G. Outhred. 007: Democratically finding the cause of packet drops. In /5th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
18), pages 419-435, Renton, WA, 2018. USENIX Association.

[4] B. Arzani, S. Ciraci, B. T. Loo, A. Schuster, and G. Outhred. Taking the blame

game out of data centers operations with netpoirot. In Proceedings of the 2016

ACM SIGCOMM Conference, pages 440-453. ACM, 2016.

B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Latapy, C. Mag-

nien, and R. Teixeira. Avoiding traceroute anomalies with paris traceroute. In

Proceedings of the 6th ACM SIGCOMM conference on Internet measurement,

pages 153-158. ACM, 2006.

[6] A. Broido and k. claffy. Analysis of RouteViews BGP data: policy atoms. In

Network Resource Data Management Workshop, Santa Barbara, CA, May 2001.

M. Calder, X. Fan, Z. Hu, E. Katz-Bassett, J. Heidemann, and R. Govindan.

Mapping the expansion of google’s serving infrastructure. In Proceedings of

the 2013 conference on Internet measurement conference, pages 313-326. ACM,

2013.

[8] M. Calder, R. Gao, M. Schrider, R. Stewart, J. Padhye, R. Mahajan, G. Anantha-
narayanan, and E. Katz-Bassett. Odin: Microsoft’s scalable fault-tolerant CDN
measurement system. In /5th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), Renton, WA, 2018. USENIX Association.

[9] R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu. Network tomography:
Recent developments. Statistical science, pages 499-517, 2004.

[10] F. Chen, R. K. Sitaraman, and M. Torres. End-user mapping: Next generation re-
quest routing for content delivery. In ACM SIGCOMM Computer Communication
Review, volume 45, pages 167-181. ACM, 2015.

[11] {. Cunha, P. Marchetta, M. Calder, Y.-C. Chiu, B. Schlinker, B. V. Machado,
A. Pescape, V. Giotsas, H. V. Madhyastha, and E. Katz-Bassett. Sibyl: A practical
internet route oracle. In NSDI, pages 325-344, 2016.

[12] A. Dhamdhere, D. D. Clark, A. Gamero-Garrido, M. Luckie, R. K. Mok, G. Aki-
wate, K. Gogia, V. Bajpai, A. C. Snoeren, and K. Claffy. Inferring persistent
interdomain congestion. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, pages 1-15. ACM, 2018.

[13] N. Duffield. Network tomography of binary network performance characteristics.
IEEE Transactions on Information Theory, 52(12):5373-5388, 2006.

[14] A. Flavel, P. Mani, D. A. Maltz, N. Holt, J. Liu, Y. Chen, and O. Surmachev.
Fastroute: A scalable load-aware anycast routing architecture for modern cdns.
connections, 27:19, 2015.

[15] D. Ghita, K. Argyraki, and P. Thiran. Network tomography on correlated links. In
Proceedings of the 10th ACM SIGCOMM conference on Internet measurement,

[5

[7

https://support.google.com/youtube/answer/6013340?hl=en
https://support.google.com/youtube/answer/6013340?hl=en

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[33

[34]

[35]

[36]

[37]

[38]

pages 225-238. ACM, 2010.

D. Ghita, C. Karakus, K. Argyraki, and P. Thiran. Shifting network tomography
toward a practical goal. In Proceedings of the Seventh COnference on Emerging
Networking EXperiments and Technologies, CONEXT ’11, pages 24:1-24:12, New
York, NY, USA, 2011. ACM.

V. Giotsas, C. Dietzel, G. Smaragdakis, A. Feldmann, A. Berger, and E. Aben.
Detecting peering infrastructure outages in the wild. In Proceedings of the Confer-
ence of the ACM Special Interest Group on Data Communication, pages 446—459.
ACM, 2017.

O. Hag, M. Raja, and F. R. Dogar. Measuring and improving the reliability of
wide-area cloud paths. In Proceedings of the 26th International Conference on
World Wide Web, pages 253-262. International World Wide Web Conferences
Steering Committee, 2017.

Y. He, M. Faloutsos, S. Krishnamurthy, and B. Huffaker. On routing asymmetry in
the internet. In GLOBECOM’05. IEEE Global Telecommunications Conference,
2005., volume 2, pages 6—pp. IEEE, 2005.

J. Jiang, R. Das, G. Ananthanarayanan, P. A. Chou, V. Padmanabhan, V. Sekar,
E. Dominique, M. Goliszewski, D. Kukoleca, R. Vafin, et al. Via: Improving
internet telephony call quality using predictive relay selection. In Proceedings of
the 2016 conference on ACM SIGCOMM 2016 Conference, pages 286-299. ACM,
2016.

P. Kanuparthy and C. Dovrolis. Pythia: Diagnosing performance problems in wide
area providers. In USENIX Annual Technical Conference, pages 371-382, 2014.
R. Krishnan, H. V. Madhyastha, S. Jain, S. Srinivasan, A. Krishnamurthy, T. An-
derson, and J. Gao. Moving beyond end-to-end path information to optimize
cdn performance. In Internet Measurement Conference (IMC), pages 190-201,
Chicago, 1L, 2009.

A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic anomalies.
In ACM SIGCOMM Computer Communication Review, volume 34, pages 219—
230. ACM, 2004.

F. Lau, S. H. Rubin, M. H. Smith, and L. Trajkovic. Distributed denial of service
attacks. In Systems, Man, and Cybernetics, 2000 IEEE International Conference
on, volume 3, pages 2275-2280. IEEE, 2000.

Y. Lee and N. Spring. Identifying and aggregating homogeneous ipv4 /24 blocks
with hobbit. In Internet Measurement Conference (IMC), Santa Monica, CA,
2016.

H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krishnamurthy,
and A. Venkataramani. iplane: An information plane for distributed services. In
Proceedings of the 7th symposium on Operating systems design and implementa-
tion, pages 367-380. USENIX Association, 2006.

A. A. Mahimkar, Z. Ge, A. Shaikh, J. Wang, J. Yates, Y. Zhang, and Q. Zhao.
Towards automated performance diagnosis in a large iptv network. In ACM
SIGCOMM Computer Communication Review, volume 39, pages 231-242. ACM,
2009.

M. Mao, J. Rexford, J. Wang, and R. Katz. Towards an accurate as-level traceroute
tool. In ACM SIGCOMM, 2003.

V. N. Padmanabhan, S. Ramabhadran, and J. Padhye. Netprofiler: Profiling wide-
area networks using peer cooperation. In International Workshop on Peer-to-Peer
Systems, pages 80-92. Springer, 2005.

L. Quan, J. Heidemann, and Y. Pradkin. Trinocular: Understanding internet relia-
bility through adaptive probing. In ACM SIGCOMM Computer Communication
Review, volume 43, pages 255-266. ACM, 2013.

A. Roy, H. Zeng, J. Bagga, and A. C. Snoeren. Passive realtime datacenter fault
detection and localization. In NSDI, pages 595-612, 2017.

B. Schlinker, H. Kim, T. Cui, E. Katz-Bassett, H. V. Madhyastha, I. Cunha,
J. Quinn, S. Hasan, P. Lapukhov, and H. Zeng. Engineering egress with edge
fabric: Steering oceans of content to the world. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, pages 418-431.
ACM, 2017.

A. Singla, B. Chandrasekaran, P. Godfrey, and B. Maggs. The internet at the speed
of light. In Proceedings of the 13th ACM Workshop on Hot Topics in Networks,
page 1. ACM, 2014.

N. Spring, R. Mahajan, and T. Anderson. The causes of path inflation. In
Proceedings of the 2003 conference on Applications, technologies, architectures,
and protocols for computer communications, pages 113-124. ACM, 2003.

R. Steenbergen. A practical guide to (correctly) a practical guide to (correctly)
troubleshooting with traceroute. In NANOG, 2017.

V. Valancius, B. Ravi, N. Feamster, and A. C. Snoeren. Quantifying the benefits of
joint content and network routing. In ACM SIGMETRICS Performance Evaluation
Review, volume 41, pages 243-254. ACM, 2013.

K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holliman, G. Baldus, M. Hines,
T. Kim, A. Narayanan, A. Jain, et al. Taking the edge off with espresso: Scale,
reliability and programmability for global internet peering. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication, pages
432-445. ACM, 2017.

M. Zhang, C. Zhang, V. S. Pai, L. L. Peterson, and R. Y. Wang. Planetseer:
Internet path failure monitoring and characterization in wide-area services. In
OSDI, volume 4, pages 12-12, 2004.

[39] Z.Zhang, M. Zhang, A. G. Greenberg, Y. C. Hu, R. Mahajan, and B. Christian.

Optimizing cost and performance in online service provider networks. In NSDI,
pages 33-48, 2010.

	Abstract
	1 Introduction
	2 Characterizing Worldwide Latency
	2.1 Dataset and methodology
	2.2 Spatial & temporal distribution of latencies
	2.3 Long-tailed distribution of badness durations
	2.4 Distribution of performance impact
	2.5 Summary of observations

	3 Overview of BlameIt
	3.1 Two-level blame assignment
	3.2 Impact-proportional budgeted probing
	3.3 End-to-end workflow

	4 Fault Localization with Passive Measurements
	4.1 Empirical insights
	4.2 Coarse-grained Fault Localization
	4.3 Learning RTT thresholds

	5 Fine-grained Localization with Active Probes
	5.1 Rationale for selective active probing
	5.2 Approach for fine-grained localization
	5.3 Prioritized On-Demand Measurements
	5.4 Optimized Background Measurements

	6 Evaluation
	6.1 Implementation and Deployment Details
	6.2 Blame Assignments in Production
	6.3 Real-world Case Studies
	6.4 Large-scale Corroboration
	6.5 Active Probes for Middle Segment Issues

	7 Related work
	8 Conclusion
	References

